
Animation on the Web: A Survey

Amit L Ahire*, Alun Evans, Josep Blat

Interactive Technologies Group, Universitat Pompeu Fabra, Barcelona, Spain

Abstract

The main motivation of this paper is to provide a current state and
a brief overview of animation on the web. Computer animation is
used in many fields and it has seen a lot of development in the
recent years. With the widespread use of WebGL and the age of
powerful modern hardware available on small devices, 3D
rendering on the browser is now becoming commonplace.
Computer Animation can be described as the rendering of objects
on screen, which can change shape and properties with respect to
time. There are many approaches to rendering animation on the
web, but none of them yet provide a coherent approach in terms of
transmission, compression and handling of the animation data on
the client side (browser). And if computer animation has to
become more accessible over the web, these challenges need to be
addressed in the same “minimalistic manner (requirement wise)”
as every other multimedia content has been addressed on the web.
We aim to provide an overview of the current state of the art,
while commenting on the shortcomings pertaining to current
formats/approaches and discuss some of the upcoming standards
and trends which can help with the current implementation.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Real Time Animation, Streaming, Compression,

WebGL, Web, Animation, Survey

1 Introduction

1.1 What is Animation?

Computer animation is rendering of sequence of images on the
screen, or can be perceived as an intuitive way of showing
visualization to the user. It can be either interactive (Character
animation), illustrative (Simulations) or entertaining (Motion
Cinema, CGI). When concerned with high end realistic outputs, as
in animation movies, the heavy duty rendering is typically carried
out on render farms, where the end product is in the form of a
video file which can be easily encoded and transmitted with
different array of algorithms and techniques available. The
purpose of this paper is not survey these techniques; we are
concerned with real time rendering, based on the underlying
transmitted mesh data, on the browser, to the array of output
terminals available today in consumer space.

*e-mail: amit.ahire@upf.edu

Animation of complex objects are represented as either a set of
points, mathematical equations or polygonal surface meshes.
Animation of an object can be thought of as applying a set of
geometric transformations or Interpolations from one set of key
frames to another. The polygonal surface meshes, which are most
commonly used data set type for animating an object, should
primarily contain the following types of data to facilitate real time
rendering: 1) Surface representation of the object with minimal
error range and 2) A mechanism to provide generation or fetching
of object properties (such as mesh vertex positions, triangle shape,
texture, normal etc.) which can help in the subsequent animation
process.

Animation as a process can be of different types depending on
how the data is handled and what sort of calculations are applied
to it:

 Animation of Static Objects: Any 3D object, irrespective

of any other force that may be acting upon it, can be
animated; either by applying various transformations to the
camera or by numerically integrating the object properties
over time based on some parameters. This is a very basic
kind on animation that can be achieved without any
complementing data from the object. Rigid bodies are the
most common physical representation systems, here the
object can be defined as one consisting of a shape in space,
and having a volume. This volume is fixed and it doesn’t
change or deform in shape over time. They can exhibit
physical properties as moving, rotating, experiencing and
exerting physical forces.

 Animation of Deformable Objects: Deformability can be

defined as change in shape or volume due to application of
external forces. Deformable objects have their own set of
physical properties and they exhibit complex motion that
needs to be taken into consideration while animating. Some
applications and examples are: Articulated Bodies
(Character Animation), Elastic Objects (Cloth, Hair etc.),
Flexible characters (fluids etc.), Procedural (height maps,
crowds etc.) and skinning.

The principal contribution of this paper is that it forms the first
survey in the state of the art into animation on the web; stating the
specific challenges that web-based animation faces, reviewing the
efforts made so far to address them, and discussing as to where
the future may lie.

1.2 Overview Of The Challenges

Animation on the web as compared to normal animation comes
with its own set of challenges and requirements. Regular
animation maybe carried out by accessing a sequence of 3D
models or by virtue of some sort of physic-based methods, which
are employed to create a time based state of the animation model
called key-frames.

For successful animation, there should be sufficient control points
or governing rules to create key-frames. Using some form of

extrapolation or interpolation techniques, subsequent frames are
generated and rendered, in a time-elapsed manner, onto the screen.

Computation and rendering of complex 3D objects is processor
intensive, and level of detail (LOD) techniques are sometimes
utilized in order to expedite the process. LOD techniques increase
or decrease the complexity of the 3D object depending on the
distance of the object from the camera. In online rendering, with a
modern web browser as our canvas (rendering context) the
paramount information is to have all the required data files for
computing and rendering in order to reproduce the animation on
the client end. But animation data can be voluminous and require
a lot of space, which is not desired on a sandboxed environment
as in a browser, hence efficient compression algorithms need to be
applied on the base animation file, so that it can be transmitted as
fast as possible and can be rebuilt with minimal information.
Employing various LOD techniques can further reduce the data
for transmission. And these transmitted data can be sent in a
structured manner to reduce the computation time on the client
side. JavaScript is mostly used to process data and rendering.

There are lots of research for compression and transmission of
static 3D objects [Avilés and Morán 2008; Rossignac 2004] and
dynamic 3D [Müller et al. 2005; Kao et al. 2010; Cao et al. 2014]
objects and some of these techniques can be extended for
animation files. But there is lack of uniformity among the various
techniques used as well as among various technological standards
on the web [Jones 2011; KhronosGroup 2014]. Hence, one
method could decimate the whole 3D object and employ a spatial
data structure in order to traverse through the structure for
different LOD, or another would split the 3D object in a coherent
manner and transmit in a structured manner. It all boils down to
the particular requirement or the format of the existing 3D object.
There is a need for a schema-less, encoding agnostic, structured or
compatible format which could support 3D files without any
dependency.

2 Problems and Challenges

2.1 Transmission Of Data

Animation of a 3D object or scene requires transmitting extra data,
beyond that which is required to render the scene statically.
Depending on the context, this extra data may dwarf the original
static data source. Transmission of data via the internet uses basic
and well established protocols such as TCP and UDP. At the
lowest level, the basic problem associated with these networking
protocols resolve around latency (TCP), accuracy (UDP) and
bandwidth (both). Latency, in this context, can be perceived as the
time needed to fully refine the 3D object since the time of
application start up, and the time to refine the model based on the
user interaction and different point of views. It is one of the most
critical issues that a low powered client device can have, but
considering that nowadays the so-called “low powered” mobile
devices are equipped with so much processing power that the
negative impact on the interactivity of the application mostly
depends on network bandwidth and how the transmission is
structured.

Despite dramatic improvements in recent years, mobile network
connections still largely suffer from low bandwidth, and moreover
these characteristic change with mobility and geographic location.
Therefore, it is important that the data is transmitted in a
structured manner and there is minimum possible interaction
between server and client. As Sutter et al. [2014] points out,
current formats allow for compression and binary transmission

but lack any internal structure for transferring more than a single
resource of a specific type. Thus, the number of requests to the
server increases with the number of resources within a scene or
object. In which case, if bandwidth is sufficient, latency becomes
the limiting factor.

The transmission of 3D data is usually a two-step approach. First,
the object structure is sent to the client. Second, the handling and
processing of the data at the client end. The 3D data format for the
web can be categorized as either text-based or in binary format.
Formats encoded as text are human readable, thus their file size is
bulkier. But the native HTTP’s GZIP compression does an
excellent job of compressing it. A typical 3D scene or object
structure(s) contains references to all the external resources such
as meshes, images, textures, and animation data. The
XMLHttpRequest (XHR) API is used to request each resource
separately and they are transmitted using JSON, XML, binary
XHR or any of the domain specific formats.

Another transmission data format suggested by Behr et al. [2012],
is to use 2D images to encode the arrays representing the
coordinates, normals and other attributes. This would allow us to
use various audio-video encoding and compression techniques,
and on the client side the data can be passed as texture in WebGL
to the GPU, bypassing all the computation. But this can cause
some problem in some older devices.

2.2 Compression & Preprocessing

The large amount of data which needs to transmitted for
animation thus benefits from some level of compression and
preprocessing, in order to reduce the time taken to transfer the
data. However, as pointed out by Evans [2014], the balance
between compression and speed is delicate, as complex
compression can take time to decompress within a browser
context, which is required to use interpreted JavaScript to do the
work (and, thus, is slower). The balance between compression and
bandwidth has been demonstrated effectively by Limper [2013].

Every mesh and its animation data is defined by: Geometry
(Vertex Positions), Connectivity (graph of triangles) [Avilés and
Morán 2008; Alliez and Desbrun 2001; Lee 2013] and
texture/color data. On a broad scale, Compression can be divided
into two groups:

Single Rate Compression: encodes and decodes the 3D object as
a whole, thus we see the entire 3D object only after the data is
decoded. These algorithms work by removing the redundancy in
the dataset, while making no assumptions about its complexity,
regularity or uniformity. Although these methods can achieve
really good compression ratios, they are unsuitable for the
network [Rossignac 2004]. For readers interested, we direct them
to these comprehensive survey papers as a starting point [Alliez
and Gotsman 2005; Avilés and Morán 2008; Ewiner 2005]

Progressive Compression: Progressive compression of 3D
meshes uses the concept of refinement over a period of time. The
idea is to transmit the crude approximation first, then predict
intermediate vertices and either transmit the residues for the
prediction or generate refinement of the mesh progressively.
During decoding the connectivity of geometry is reconstructed
incrementally from the transmission stream. The main advantage
here is the minimal wait time for the user as intermediate states
are transmitted through the network. Hoppe [1996] proposed
progressive meshes (PM) in his seminal paper: a progressive mesh
is obtained from a simplified base mesh and a series of vertex

splits (vsplits), which are used to refine the base mesh into a more
refined and detailed mesh. Hoppe et al. took this further and
developed view-dependent progressive meshes (VPM) where
features contributing to the visible part is given priority for
transmission. [Hoppe 1997; To et al. 2001; Yang et al. 2004].
Garland et al. proposed [Garland and Heckbert 1997] a method
based on simplifying the vertex pair in the mesh iteratively, which
was accurate and had a very low computation time. The simplified
edge sequence is determined by the quadric error metrics (QEM)
– a quadric measure which is a matrix that represents the sum of
the squared distances from the vertex to the planes of neighboring
triangles, is associated with each vertex.

Geometry videos [Briceño et al. 2003] offer a different approach,
based on the geometry images of [Gu et al. 2002]. The mesh is
first parameterized, then re-sampled over a regular grid in space.
The result is a 2D image with three channels, for x, y and z
coordinates. The mesh geometry is stored or transmitted simply as
an image stream, which can be compressed using existing video
compression methods.

2.3 Rendering

In this section, we briefly survey the principal rendering context
for web-based animation. WebGL has been used for real time 3D
visualization over the web, which is an imperative approach to 3D
web graphics [Jankowski et al. 2013; Coughlin 2014]. It uses the
HTML5 canvas element and JavaScript to expose low level
graphics API which is based on OpenGL ES 2.0 (a restricted
version of the OpenGL API, originally designed for embedded
systems, but capable of compiling vertex and fragment shaders).
During initialization of the WebGL context, the shader code is
compiled and copied onto the video card memory to be executed
on the GPU. 3D data is fetched over the Internet using any of the
data-interchange formats (See section 3.4). These fetched data are
stored in ArrayBuffers, with the recent TypedArray specification
[Herman and Russell 2013; Ecma International 2013], which
allows for low level manipulation in JavaScript and moreover,
they are perfect for parallel decoding in the GPU, as data can be
copied with zero overhead between the web worker [World Wide
Web Consortium 2013] and the main thread.

Indexed 16-bit arrays: The current limitations are mainly in
terms of the current specification of the rendering API. In
comparison with the standard OpenGL specification, the
glDrawElements() function used for mesh rendering only allows
GL_UNSIGNED_BYTE and GL_UNSIGNED_SHORT types for index
array, limiting it to a maximum of 65536 vertices in an array. To
render larger meshes, the mesh needs to be split into sub-meshes
with number of indices not exceeding this limit.

Large Memory Footprint Of Declarative Languages: As Sons
[2010] pointed out, that both WebKit and Mozilla represent the
text within an HTML element as native “text nodes” within the
DOM data. As a result both currently store the full text
representations of all vertex data in the DOM, which increases the
memory footprint.

DOM onProgress Event: While using the Progressive Image-
based transmission method, due to the periodical notification of
the onProgress event, there could be cases when only
approximations of the sub images are calculated. Some web
browsers employ a better approach, where the onProgress event
wouldn’t be time based but would only be triggered after
completion of some event such as loading up of one sub image.

3 Survey of Current Approaches

3.1 Transmission over the Web

Computer animation files exported from 3D modeling
applications are huge in size, for transmission over the web, let us
define the process, whereby a lightweight HTML pages holds the
DOM structure and embedded script code and all the other
external data such as mesh, vertices, animation data, and images
are separately requested over the HTTP protocol. Here, we
compare some of the current solutions and methods :[Doboš et al.
2013; Sutter et al. 2014]

Binary transmission: A very simple and common approach
which is used in XML3D [Sons et al. 2010; Sons 2013], X3DOM
[Stamoulias et al. 2014; X3DOM], glTF [KHRONOS GROUP
2012] and Three.js[Cabello 2010]. The data being transmitted is
encoded in textual representation (e.g. XML or JSON) and the
external data is requested using a XHR request separately.

Image Based: Here, the mesh data is encoded into images, which
presents us with the opportunity to effectively use the
underutilized power of the GPU on the modern systems. Encoding
geometry information inside 2D images is a very promising
prospect. Image decoding is done natively in the browser,
decoding vertex data to the GPU totally bypasses any JavaScript
based decoding. Sequential Image Geometry (SIG) [Behr et al.
2012] extends this approach further by adding functionality for
quantization and progressive loading.

Domain Specific: There are many solutions for streaming static
3D meshes, But a 3D object not just consists of a mesh, but also
contains other information such as texture, normals etc. Hence, it
can be hard for any methods to be extended to all kinds of 3D data.
Solutions like OpenCTM [Geelnard 2009] and WebGL-Loader
[Chun 2011; Blume et al. 2011] are lossless and efficient binary
representations. Both formats are converted to TypedArray, which
needs to be processed on the client side. Compared to image
based GPU solution, it can have a slower decoding speed.

3.2 Compression and Preprocessing

Level of Detail: Another issue is the reduction of quality and
detail of the mesh in interactive applications. LOD concepts such
as Progressive meshes [Hoppe 1996] help render according to the
scene details either by mesh simplification process or by
exploiting progressive transmission and decompression schemes.

Mesh Level of Detail: Representation of objects based on their
distance from the camera with lower LOD for distant object and
higher LOD for nearer object, the interactivity and rendering of
the 3D scenes can be improved a lot. According to [Savoye and
Meyer 2008], there are no algorithms that excel at simplifying
animated models and in achieving high fidelity of the original
mesh. Either there are quantization metric measures for surface
simplification and preserving the topology using Quadric Error
Metric (QEM) by [Garland and Heckbert 1997]; or the most
popular real-time triangle reduction for polygon manifolds,
introduced by Hoppe et al., Progressive Meshes [1996]. Ensuring
the best quality of a mesh simplification requires huge
computational costs, and sometimes for no significant visual
improvement.

Animation Level of Detail: Simplification techniques work well
for static meshes but not so much for deformable objects.
Deformation Sensitive Decimation (DSD) by Mohr and Gleicher

[2003] was based on the idea of QEM [Garland and Heckbert
1997], for measuring the contraction cost of edges. Pilgrim et al.
[2006] present Progressive Skinning – A view and pose
independent methods for automatic skeleton simplification for the
methods given in [DeCoro and Rusinkiewicz 2005]. The method
uses an edge collapsed contraction with QEM and a linear
skinning weight update rule. Kavan et al. introduced in [Kavan et
al. 2008] a novel representation of virtual characters called
Polypostors with 2D polygonal impostors. Mukai and Kuriyama
introduce the idea of motion level of detail in [Mukai and
Kuriyama 2007] using an LOD control method of motion
synthesis with a multilinear model.

3.3 Rendering Animation

Animation in the WebGL context can employ many different
concepts such as: 1) programmatically updating properties of the
visual object each time through the run loop; 2) Using key frame
animation, intermediate frames are generated via interpolation; 3)
Using morph targets to deform geometry by blending among a set
of distinct shapes. 4) Using skinning to deform geometry based on
the underlying skeleton. And 5) Implementation of some/all of the
above using GPU based methods, where the deformation of
vertices and fragment values are computed on the GPU in the
shaders.

For rendering progressive animation in WebGL, the animation
should be reconstructed first after the minimal transmission is
done, a coarse representation is rendered on the screen. Then as
more data is downloaded, and more information becomes
accessible, the compressed animation is refined. Mostly these
refinement methods can be classified into 1) Connectivity
updating - which changes the feature shapes of an animation, and
2) Geometry updating – which changes the complexity of the
motion.

In real-time rendering, 2D images are used to store textures that
are applied and interpolated during the shading process to flat
surfaces in 3D space. Similarly, Normal maps and displacement
maps give the illusion of more structured details. For 3D data
transmission, textures can be used by using the quantization
threshold [Rodríguez et al. 2013; Maglo et al. 2012; Schwartz et
al. 2011] which represents a factor by which to quantize the

geometry, which can be transmitted separately in a JSON file.
Once the client side application knows of the factor, the
decompression of the PNG takes place to retrieve the chunk of
relevant data into a WebGL texture. Behr et al. present a detailed
explanation on various techniques involving 2D images for data
transmission. [Behr et al. 2012]

Using VBO in WebGL: Declarative languages provide types for
data entries in the structure which can be directly mapped to an
OpenGL Vertex Buffer Objects (VBOs). These set of vertex
attributes can then be packed into Vertex Array Objects (VAOs)
(available in WebGL 1.0 through OES_vertex_array_object
extension) and called in a single API call to reduce the state
change overhead. In comparison, when data is transmitted in
binary or any other domain specific manner, different subsets of
3D data is sent to the shader to be rendered. To draw such highly
frequent changing data in the VBOs, they need to be constantly
created and/or updated and the data needs to be passed from main
memory to client-side index array which proves to be a huge
performance bottleneck for WebGL. One approach to reduce the
vertex buffer switches, is to have all the mesh data in a single
image (either a texture atlas or map) and create one VBO on the
JavaScript layer and bind it with this single image geometry and
have all the other data directly uploaded as textures in the GPU.
This is similar to the technique used in [Behr et al. 2012],
[Schwartz et al. 2011], [Englert et al. 2014] and [Stein et al. 2014].
This allows the GPU to store more mesh data, and calculate all the
decoding and vertex coordination on the fly.

3.4 How existing formats and/or libraries deal

with Animation

3D graphics on the web features various file formats and libraries,
each with its own advantages and disadvantages. In this paper, we
will not focus on the general functionality and working aspect of
these. There are many surveys available which do a fine job
explaining them [Evans et al. 2014; Coughlin 2014]. Here, we
will only focus on how these file formats or libraries deal with
animation.

X3D: X3D is a royalty free ISO standard defining an XML based
file format for representing Web3D computer graphics and was
first accepted as an ISO standard in 2004. X3D is designed to
deliver a lightweight and balanced web-based application, which
offers easy to use and develop interactive real-time 3D content.
The X3D standard supports a wide number of advanced 3D
graphics functionalities, including key frame animations,
humanoid animations (H-Anim) etc. [Stamoulias et al. 2014].
X3D consists of nodes which handle various types of jobs within
the framework, In order to handle key frame animations it goes
through the following process: The TimeSensor node is used to
control animation as time passes. An OrientationInterpolator
node sits between the TimeSensor node and the Transform node
and turns the events into vectors. Based on the update time step,
the object properties are updated in order to achieve the animation.
[X3D; H-Anim]. In [Schilbach 2014], a framework for animation
is introduced based on the existing model but it is mainly aimed at
generating animated visualization to conduct quantitative
experiments and not on real time realistic animation.

X3DOM & X3DOM Binary Geometry (BG): X3DOM allows
X3D documents to be easily embedded directly into web
applications by integrating X3D into the DOM [Behr et al. 2010;
Stamoulias et al. 2014]. X3DOM operates as a connector which
is responsible for the synchronization of the browser frontends
and the X3D backend, by monitoring DOM updates in the X3D

Figure 1: Depending of various factors, mesh can be decimated to

various levels. Images reference from [DeCoro and Rusinkiewicz

2005] and [Lavoué et al. 2013]

Figure 2: An example of animation in three.js showcasing

blending and morphing [Cabello 2010].

code. The raw binary encoding of indices and vertex attributes are
considered, along with lightweight structure description in the
human readable format by packing them in a grid format such as
in images and video. It is mainly possible because of the
TypedArray [Ecma International 2013] specification of JavaScript,
a recent addition to JavaScript to handle the binary data efficiently.
TypedArray are like a slab of memory, more like how the array
works in C, which allows downloading and manipulation of the
binary data directly in a web page using JavaScript, and they can
be transferred with zero copying overhead between a Web Worker
[World Wide Web Consortium 2013] and the main thread and
onto the GPU, thus minimalizing the CPU-GPU overhead. It does
support animation and interaction to some degree without the low
level flexibility. [X3DOM]

XML3D: XML3D [Sons et al. 2010; Sons 2010] is a minimal
extension to HTML5 for interactive 3D content. It defines a small
set of new elements to describe a scene graph with 3D geometry,
surface shading, and lighting. In addition, it features the
declaration of generic data structures as well as the declarative
language. Xflow [Klein et al. 2013] is used to perform vertex and
images processing on the data. XML3D supports a wide range of
3D related features, such as skinned mesh animations and
Augmented Reality [Klein 2013] without adding a large amount
of new DOM elements.[XML3D]

glTF: glTF is created from a Collada [KHRONOS GROUP]
digital asset exchange (.dae) files which became an ISO standard
in 2013. Collada is widely supported as an export file type option
across many types of 3D content creation software. Every glTF
asset is comprised of various files, which is embedded in a JSON
based description that references multiple binary files. The JSON
description contains all information necessary to extract the
embedded information inside the binary files. Using the JSON
format for the scene hierarchy is practical because it is much more
easily parsed than XML and is also more compact so will take
less time to download as well. Textures are simply PNG, JPEG
etc., hence there is no need for further modification as all the
major browsers come with these decoders. The mesh binary data,
is raw binary data meant to be passed directly into buffers.
Optional Open3DGC encoding is available [Mammou 2013]
which is designed for fast decoding in JavaScript or C++ using
arithmetic algorithms.

A common approach in XML3D, X3DOM and glTF are
unstructured binary XHR using an additional document for
structure information.

Sequential Image Geometry (SIG): Here, instead of
transforming and resampling of the original mesh to a regular
structure, it utilizes an image file structure to store unlinked vertex
data and indices. The vertex arrays are split into 8-bit chunks of
decreasing relevance that are distributed as a sequence of images.
The approach supports quantization and progressive loading as
long as the transmission is in correct order. [Behr et al. 2012]

OpenCTM : OpenCTM is an open binary format for 3D mesh
compression [Geelnard 2009]. It provides a compact
representation of 3D triangle meshes using the entropy-reduction
technique with the state-of-the-art Lempel-Ziv-Markov chain
algorithm (LZMA [7Zip]) also offering good compression rates,
while still providing a relatively fast decompression. OpenCTM is
a mainly a lossless compression technique but also allows to use a
lossy compression in order to improve the compression ratio.
[Chávez et al. 2013; Limper et al. 2013]

WebGL-Loader (Or UTF-8 Compression): The UTF-8
compression or also known as the WebGL-Loader is a JavaScript
library for compact mesh transmission. [Blume et al. 2011; Cozzi
and Riccio 2012; Chun 2011], which was developed for Google
Body project - a browser based human anatomy project. The UTF-
8 compression is a lossy technique. It improves compression by
predicting the normal direction from neighborhood positions of
incident triangles, also performs a vertex cache optimization on
the index list [Forsyth 2006]. Instead of a simple delta encoding, a
more advanced parallelogram prediction is used for the attributes,
it predicts the next vertex position by constructing a parallelogram
with the last three vertices of the triangle strip. The normals are
predicted using the cross product of the edges of every triangle.
The data is encoded using the UTF-8 character set: 16-bit values
taking 1-3 bytes per character. So, the lower the values, the lesser
memory the algorithm requires for encoding a mesh. And the
native GZIP implementation of the browser, provides a fast
decompression.

Three.js: Three.js has becomes a very popular option on the web,
it provides good performance and good abstraction making it
easier to use than dealing with low level initialization. While
dealing with animation, it deals with skeletal animation, morph
shapes and key frames [Cabello 2010; 2012], It allows “baked”
animation i.e. where vertices per frame are available in the file,
similar to how morph target or blend shapes work, and also
blending and interpolation among the key frames. It supports
many types of blending (additive, multiplying and subtractive)
and uses Catmull-rom spline method to interpolate among given
frames [Cabello 2011a; Cabello 2011b] Catmull-rom spline are
means of representing a curve, by specifying a series of points at
interval along the curve and then using a mathematical function
that then calculates the additional points along the way.

Three.js supports animation by taking in a JSON, which consists
of parameters such as position, rotation, scale, time etc. The
library itself provides several scripts for exporting and/or
converting popular 3D formats (such as format discussed above)
into a three.js compatible JSON. Currently the library only
handles mesh models, non-manifold and other data formats of the
objects are not supported. For key frame animation, the weights
associated with vertices must be mentioned for proper
representation, and it supports multiple animations for a single
object. [Ray 2014]

Babylon.js: Babylon.js is another open source framework,
supported by Microsoft. While Three.js attempts to bring wide
range of animation features, Babylon.js takes a more target
specific approach and focuses more on being a game engine

equipped with collision detection and a physics engine. In terms
of 3D object animation, it supports key frame animation and
skeletal animation [Microsoft 2013], and also importing scenes
from various 3D formats such as OBJ and FBX. A skeleton is
specified by providing the bone information, weights and
influences associated with each vertex position.

SpiderGL : SpiderGL is a 3D graphics library for real time
rendering [Di Benedetto et al. 2010], it provides a data structure
and algorithms to ease development and similarly aims at
providing an abstraction for developers to use the underlying
graphical capability of WebGL. It supports features such as
asynchronous content loading etc. But it doesn’t seem to support
animation as such.

4 Future Trends Or Discussion

4.1 Transmission Of Data

The Web is in need of a binary transmission format for 3D data
that allows for domain-specific or at least a general standard of
compression technique for animation data. As outlined in [Sons
2013], every binary transmission format for the Web has to be
designed to reduce the number of requests, handle network
characteristics and facilitate client applications in providing a
good user experience. All approaches discussed here address only
a subset of the challenges that need to be solved for a general,
common, and efficient transmission of 3D data. With regards to
3D asset transmission, a prominent problem is the lack of
progressive streaming of all relevant mesh and texture data, with a
minimal number of HTTP requests. Furthermore, there is still no
established format for a joined, interleaved transmission of
geometry data and texture data.

[Limper et al. 2014a] aims to minimize the number of HTTP
requests, by progressively transmitting an arbitrary number of
mesh data chunks within a single SRC file. This file contains the
reference to all the resources of data and progressively downloads
them.

Another approach to solving the bandwidth problem is to use
caching strategies; caching is necessary to improve the
performance by avoiding redundant data transfer. Caching
prevents sending large amount of data, but it requires bi-
directional communication which is not available HTTP protocol.

WebSockets can be used, which could improve latency as it
supports a full duplex communication channel. Web Sockets
allow the client and server to stream data bi-directionally but
requires a protocol understood by both ends. However, no general
protocol for the transmission of 3D data has been established yet.
To improve upon the lack of progressive downloads, there is
already W3C draft in the works for the next standards for HTTP
2.0 and Streams API, which will bring progressive downloads to
its feature list.

A more challenging problem worthy of further investigation is 1-
D streaming [Lee 2013], which combines the geometry and
connectivity operators into the more general refining operators.
To achieve different progressive representations for animation,
other progressive methods such as valance-driven can be
compared.

Gobbetti et al. [Gobbetti and Marton 2012] proposed a method
that also uses image-based mesh description format. It resamples
the model data in order to build a tight atlas parametrization of the
mesh geometry. This enables them to use the atlas images also for
multi-resolution transmission and rendering via simple mipmap
operations.

Similar to X3DOM’s BinaryGeometry node, Lee et al. [2010]
propose to reduce the size of binary mesh data for efficient
storage and transmission, using a straightforward local
quantization scheme. They argue that geometry compression for
mobile graphics requires a careful choice of the compression
method in order to maintain interactive decompression rates.

4.2 Compression and Preprocessing

Lavoué et al. [2013] state some of the issues that are overlooked
by the scientific community: Existing compression techniques
give more importance to compression ratio, where as in online
transmission, improving quality of level of detail is more
important than being clever and gaining a few extra bits. Few
recent researchers have taken LOD into serious consideration.
[Peng et al. 2010; Lee 2013]

Perfect level of detail management requires efficient handling of
the 3D object attributes such as color, texture and other
information regarding the data and animation. They need to be
progressively maintained and processed as LOD of geometry and
connectivity is handled. Some example of recent techniques are
[Lee 2013; Limper et al. 2014a; Schwartz et al. 2011; Behr et al.
2012].

Wen et al. [Wen 2014] presents a similarity aware 3D model
reduction method, which searches for similar component in the
3D model and reuse them through the construction of Lightweight
Scene Graph (LSG), It doesn’t require any decompression at the
client end and required LOD is obtained with help of instance
rendering.

The objective of progressive compression is to speed up
transmission over the network, but if decompression takes as long
on the client side, then there is no point in applying fancy
techniques and data structures. It needs to rely on simple yet
effective algorithm, which could easily transcribe itself onto
JavaScript and WebGL.

Figure 3: Multiple XHRs to server to download resources is not

good., Idealy streaming XHR should consist of only one

request.Image reference from [Limper et al. 2014b]

4.3 Rendering

JavaScript has evolved tremendously in the last few years, from
being the scripting language of the client-side Web to a full-
fledged comprehensive language used in almost any application
area. It runs on a sandbox environment on a browser but now with
the help of frameworks such as node.js or Rhino, it is used as a
standalone language. One of the biggest drawbacks is its slow
execution speed when complied just-in-time (JIT). In an attempt
to bring JavaScript execution speed closer to native code, asm.js
was developed, which enables a strict subset of JavaScript
language; stripping if off of some of the features, allows for
performance improvement such as ahead-of-time optimization
and hence speeding up the execution speed. Another strategy has
been used to enable the developer to bring their native(C/C++)
legacy code to the browser, Google Native Client is one such
sandboxing technology which would allow safely running native
codes from a web browser. Emscripten [Zakai 2011] is another
such attempt, it’s a transcompiler – it takes bit code as input and
emits JavaScript code (in asm.js).

Parallelism in JavaScript: Client side processing in JavaScript
when dealing with large amount of data can stall the performance,
as JavaScript is single-threaded. WebWorkers were introduced in
HTML5 and help in parallel decoding by taking care of some task
in the background and then passing the data to the main thread
through message passing. Apart from WebWorkers, other
technologies that aim to bring parallelism by passing the
computation onto the GPU are : River Trail [Herhut et al. 2013]
and WebCL [KhronosGroup 2012] . River Trail provides a
ParallelArray data structure with primitive operations that operate
on it and offload the computation to the GPU and the underlying
OpenCL implementation. WebCL exposes a subset of OpenCL
1.1 through JavaScript and allow application to harness the power
of the GPU.

WebGL 2.0: The WebGL 2.0 specification has been under
development for two years and is approaching release. WebGL
2.0 is equivalent to OpenGL ES 3.0, although many of the current
specifications are available as extension packages of WebGL 1.0.
Some of the major features include occlusion queries – which
tries to reduce the rendering load on the graphical system by
eliminating objects from the rendering pipeline which are hidden
by other objects; transform feedback – capturing primitives
generated by the vertex shader and recording data into a
BufferObjects, thus allowing to preserve and resubmit data
multiple time; Multiple render targets – allows a single draw call
to write out to multiple targets (texture or renderBuffer); and ,
vertex array objects (VAO) – VAO allows us to store the
vertex/index binding information for set of objects in a easy to
manage manner.

Stein et al. [2014] demonstrate using spatial data structure on the
client end using the latest features of WebGL 2.0 to improve upon
the shortcomings of the current 3D web environment. They render
an interactive visualization of large 3D data sets, by employing
small bounding volume hierarchies to accelerate visibility
determination. Although they support only static scenes, they
efficiently handle and render huge amounts of data sets into the
scene.

Texture Compression: Texture compression can drastically
reduce the amount of memory consumption in a 3D scene. It can
also be helpful in transmission. Texture compression support of
WebGL allows for the direct upload of the compressed textures
onto the GPU without the need of any processing step. There are

many WebGL extensions to support various different formats.
Texture can also contain other data which can be helpful for
rendering, all the data required for rendering is stored in 2D
textures, as currently this is what is supported by WebGL,
although 3D textures are proposed to be supposed in WebGL 2.0
specification.

5 Conclusion

We have presented an overview of the state of animation over the
web and the open challenges present in the context. It is clear that
WebGL as graphical platform and web browsers as a common
viewport present seamless prospects for graphics over the web.
With the new working draft of these standards, any or all barriers
for real time rendering are fast diminishing. But it is also clear
that there is a need for a common, structured, encoding-agnostic
and stream able standard for animated content over the web.

Most of the current techniques are built upon a few seminal works
which have approached the problem in diverse ways. For example,
one general approach tries to decimate the mesh data based on the
connectivity, geometry, and using a spatial data structure for
traversal. While other approaches are more geared towards
efficient rendering on the client side. Moreover, there is
surprisingly little work done on bringing real time animation on
the web, most of it has been focused on transmitting static 3D
mesh objects.

Nonetheless, there is a lot of research done recently concerning
WebGL and rendering objects on the web [Congote et al. 2011;
Schilbach 2014; Stein et al. 2014; Stamoulias et al. 2014].
WebGL 2.0 promises to bring many more features to the table,
and there are several interesting avenues that need to be explored,
such as using the GPU to parallelize the computing process (on
the browser), protecting intellectual data post-transmission, and
efficient reproduction of the animation data. Fortunately, the
landscape on the web is soon catching up with the state of the art
and promises to bring exciting new features with broadening
horizons.

Acknowledgement

This work was supported by the European Commission, H2020
KRISTINA project, and by the Spanish EEE (TIN2011-28308-
C03-03) project.

References

7ZIP. Lempel-Ziv-Markov Chain Algorithm (LZMA). .
ALLIEZ, P. AND DESBRUN, M. 2001. Progressive Compression for

Lossless Transmission of Triangle Meshes. Proceedings of
the 28th annual conference on Computer graphics and
interactive techniques, 195–202.

ALLIEZ, P. AND GOTSMAN, C. 2005. Recent advances in
compression of 3D meshes. Advances in Multiresolution
for Geometric Modelling, 1–25.

AVILÉS, M. AND MORÁN, F. 2008. Static 3D triangle mesh
compression overview. Proceedings - International
Conference on Image Processing, ICIP 2, 2684–2687.

BEHR, J., JUNG, Y., FRANKE, T., AND STURM, T. 2012. Using
images and explicit binary container for efficient and
incremental delivery of declarative 3D scenes on the web.
Web3D 3D technologies for the World Wide Web 1, 17–26.
http://dl.acm.org/citation.cfm?id=2338717.

BEHR, J., JUNG, Y., KEIL, J., ET AL. 2010. A scalable architecture
for the HTML5/X3D integration model X3DOM.

Proceedings of the 15th International Conference on Web
3D Technology - Web3D ’10, ACM Press, 185.

DI BENEDETTO, M., PONCHIO, F., GANOVELLI, F., AND SCOPIGNO, R.
2010. SpiderGL. Proceedings of the 15th International
Conference on Web 3D Technology - Web3D ’10, ACM
Press, 165.

BLUME, A., CHUN, W., KOGAN, D., ET AL. 2011. Google Body.
ACM SIGGRAPH 2011 Talks on - SIGGRAPH ’11, ACM
Press, 1.

BRICEÑO, H.M., SANDER, P. V., MCMILLAN, L., GORTLER, S., AND

HOPPE, H. 2003. Geometry videos: a new representation for
3D animations. 136–146.

CABELLO, R. 2010. ThreeJS. .
CABELLO, R. 2011a. Three.js | Animation.js. .
CABELLO, R. 2011b. Three.js | Animation Docs. .
CAO, C., HOU, Q., AND ZHOU, K. 2014. Displaced dynamic

expression regression for real-time facial tracking and
animation. ACM Transactions on Graphics 33, 4, 1–10.

CHÁVEZ, G., ÁVILA, F., AND ROCKWOOD, A. 2013. Lightweight
Visualization for High-Quality Materials on WebGL.
Proceedings of the 18th International Conference on 3D
Web Technology, 109–116.

CHUN, W. 2011. WebGL-Loader.
https://code.google.com/p/webgl-loader/.

CONGOTE, J., SEGURA, A., KABONGO, L., MORENO, A., POSADA, J.,
AND RUIZ, O. 2011. Interactive visualization of volumetric
data with WebGL in real-time. Proceedings of the 16th
International Conference on 3D Web Technology -
Web3D ’11, ACM Press, 137.

COUGHLIN, B. 2014. 3D for the Modern Web - Declarative3D and
glTF. http://mason.gmu.edu/~bcoughl2/cs752/.

COZZI, P. AND RICCIO, C. 2012. OpenGL Insights. 712.
http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/Open
GLInsights-WebGLModelsEndToEnd.pdf.

DECORO, C. AND RUSINKIEWICZ, S. 2005. Pose-independent
simplification of articulated meshes. Proceedings of the
2005 symposium on Interactive 3D graphics and games -
SI3D ’05, ACM Press, 17.

DOBOŠ, J., SONS, K., RUBINSTEIN, D., SLUSALLEK, P., AND STEED,
A. 2013. XML3DRepo. Proceedings of the 18th
International Conference on 3D Web Technology -
Web3D ’13, ACM Press, 47.

ECMA INTERNATIONAL. 2013. ECMAScript Language
Specification, 6th Edition, Draft Revision 14.
http://wiki.ecmascript.org/doku.php?id=harmony:specificat
ion_drafts.

ENGLERT, M., JUNG, Y., KLOMANN, M., ETZOLD, J., AND GRIMM, P.
2014. Instant texture transmission using bandwidth-
optimized progressive interlacing images. Proceedings of
the Nineteenth International ACM Conference on 3D Web
Technologies - Web3D ’14, ACM Press, 144–144.

EVANS, A., ROMEO, M., BAHREHMAND, A., AGENJO, J., AND BLAT,
J. 2014. 3D graphics on the web: A survey. Computers &
Graphics 41, 43–61.

EWINER, T.H.L. 2005. GEncode : Geometry – driven compression
in arbitrary dimension and co – dimension 1 Introduction 2
Basic concepts. 1–8.

FORSYTH, T. 2006. Linear-Speed Vertex Cache Optimisation.
https://home.comcast.net/~tom_forsyth/papers/fast_vert_ca
che_opt.html.

GARLAND, M. AND HECKBERT, P.S. 1997. Surface simplification
using quadric error metrics. Proceedings of the 24th annual
conference on Computer graphics and interactive
techniques - SIGGRAPH ’97, ACM Press, 209–216.

GEELNARD, M. 2009. OpenCTM Mesh Compression Format.
http://openctm.sourceforge.net/.

GOBBETTI, E. AND MARTON, F. 2012. Adaptive quad patches: an
adaptive regular structure for web distribution and adaptive
rendering of 3D models. Web3D 3D technologies for the
World Wide Web, 9–16.

GU, X., GORTLER, S.J., AND HOPPE, H. 2002. Geometry images.
ACM Transactions on Graphics 21, 3, 355–355–361–361.

H-ANIM. Humanoid Animation. http://www.h-anim.org.
HERHUT, S., HUDSON, R.L., SHPEISMAN, T., AND SREERAM, J. 2013.

River trail. Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming
systems languages & applications - OOPSLA ’13, 729–744.

HERMAN, D. AND RUSSELL, K. 2013. Typed Array Specification.
http://www.khronos.org/registry/typedarray/specs/latest/.

HOPPE, H. 1996. Progressive meshes. Proceedings of the 23rd
annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’96, ACM Press, 99–108.

HOPPE, H. 1997. View-dependent refinement of progressive
meshes. Proceedings of the 24th annual conference on
Computer graphics and interactive techniques -
SIGGRAPH ’97, ACM Press, 189–198.

JANKOWSKI, J., RESSLER, S., SONS, K., JUNG, Y., BEHR, J., AND

SLUSALLEK, P. 2013. Declarative integration of interactive
3D graphics into the world-wide web. Proceedings of the
18th International Conference on 3D Web Technology -
Web3D ’13, ACM Press, 39.

JONES, B. 2011. TojiCode: Compressed Textures in WebGL.
http://blog.tojicode.com/2011/12/compressed-textures-in-
webgl.html.

KAO, C.K., JONG, B.S., AND LIN, T.W. 2010. Representing
progressive dynamic 3D meshes and applications.
Proceedings - Pacific Conference on Computer Graphics
and Applications, 5–13.

KAVAN, L., DOBBYN, S., COLLINS, S., ŽÁRA, J., AND O’SULLIVAN,
C. 2008. Polypostors. Proceedings of the 2008 symposium
on Interactive 3D graphics and games - SI3D ’08, ACM
Press, 149.

KHRONOS GROUP, 2012. 2012. glTF - the runtime asset for-
mat for WebGL, OpenGL ES, and OpenGL.
https://github.com/KhronosGroup/glTF.

KHRONOS GROUP, 2013. COLLADA.org. https://collada.org/.
KHRONOSGROUP. 2012. WebCL, Heterogeneous parallel

computing in HTML5 web browsers.
http://www.khronos.org/webcl/.

KHRONOSGROUP. 2014. WEBGL_compressed_texture_s3tc
Extension Specification. The Khronos Group.
http://www.khronos.org/registry/webgl/extensions/WEBG
L_compressed_texture_s3tc/.

KLEIN, F. 2013. Declarative AR in the Web with XML3D and
Xflow XML3D. 1–8.
http://www.perey.com/ARStandards/[Klein-
Slusallek]xflow_9th_AR_St_Meeting.pdf.

KLEIN, F., SONS, K., RUBINSTEIN, D., AND SLUSALLEK, P. 2013.
XML3D and Xflow: Combining declarative 3D for the
Web with generic data flows. IEEE Computer Graphics
and Applications 33, 5, 38–47.

LAVOUÉ, G., CHEVALIER, L., AND DUPONT, F. 2013. Streaming
compressed 3D data on the web using JavaScript and
WebGL. Proceedings of the 18th International Conference
on 3D Web Technology - Web3D ’13, 19.
http://dl.acm.org/citation.cfm?id=2466533.2466539.

LEE, J., CHOE, S., AND LEE, S. 2010. Mesh geometry compression
for mobile graphics. 2010 7th IEEE Consumer
Communications and Networking Conference, CCNC 2010,
301–305.

LEE, P.-F. 2013. Progressive Animation Sequences. 2013 10th
International Conference Computer Graphics, Imaging and
Visualization, 11–16.

LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D.W. 2014a.
SRC - a streamable format for generalized web-based 3D
data transmission. Proceedings of the Nineteenth
International ACM Conference on 3D Web Technologies -
Web3D ’14, 35–43.
http://dl.acm.org/citation.cfm?id=2628588.2628589.

LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D.W. 2014b.
SRC - a streamable format for generalized web-based 3D
data transmission. Proceedings of the Nineteenth
International ACM Conference on 3D Web Technologies -
Web3D ’14, 35–43.

LIMPER, M., WAGNER, S., STEIN, C., JUNG, Y., AND STORK, A. 2013.
Fast delivery of 3D web content. Proceedings of the 18th
International Conference on 3D Web Technology -
Web3D ’13, ACM Press, 11.

MAGLO, A., COURBET, C., ALLIEZ, P., AND HUDELOT, C. 2012.
Progressive compression of manifold polygon meshes.
Computers & Graphics 36, 5, 349–359.

MAMMOU, K. 2013. Open 3D Graphics Compression.
https://github.com/KhronosGroup/glTF/wiki/Open-3D-
Graphics-Compression.

MICROSOFT. 2013. Babylon.js. .
MOHR, A. AND GLEICHER, M. 2003. Deformation sensitive

decimation. .
MUKAI, T. AND KURIYAMA, S. 2007. Multilinear Motion Synthesis

with Level-of-Detail Controls. 15th Pacific Conference on
Computer Graphics and Applications (PG’07), IEEE, 9–17.

MÜLLER, K., SMOLIC, A., KAUTZNER, M., EISERT, P., AND

WIEGAND, T. 2005. Predictive compression of dynamic 3D
meshes. Proceedings - International Conference on Image
Processing, ICIP 1, 621–624.

PENG, J., HUANG, Y., KUO, C.C.J., ECKSTEIN, I., AND GOPI, M.
2010. Feature oriented progressive lossless mesh coding.
Computer Graphics Forum 29, 2029–2038.
http://www.ics.uci.edu/~gopi/PAPERS/PG10.pdf.

PILGRIM, S.J., AGUADO, A., MITCHELL, K., AND STEED, A. 2006.
Progressive skinning for video game character animations.
ACM SIGGRAPH 2006 Sketches on - SIGGRAPH ’06,
ACM Press, 114.

RAY, A. 2014. Exporting models from 3dsMax to ThreeJS. .
RODRÍGUEZ, M.B., GOBBETTI, E., MARTON, F., AND TINTI, A. 2013.

Coarse-grained multiresolution structures for mobile
exploration of gigantic surface models. SIGGRAPH Asia
2013 Symposium on Mobile Graphics and Interactive
Applications on - SA ’13, ACM Press, 1–6.

ROSSIGNAC, J. 2004. Compressing Volumes and Animations
(Tutorial Notes). .

SAVOYE, Y. AND MEYER, A. 2008. Multi-layer level of detail for
character animation. Proceedings of the Workshop on
Virtual Reality Interaction and Physical Simulation -
VRIPHYS.

SCHILBACH, J. 2014. An Event-Based Framework for Animations
in X3D. 89–97.

SCHWARTZ, C., RUITERS, R., WEINMANN, M., AND KLEIN, R. 2011.
WebGL-based Streaming and Presentation Framework for
Bidirectional Texture Functions. The 12th International
Symposium on Virtual Reality Archeology and Cultural
Heritage VAST 2011, 113–120.
http://diglib.eg.org/EG/DL/WS/VAST/VAST11/113-
120.pdf.

SONS, K. 2010. XML3D: Declarative and interactive 3D graphics
as extension to HTML5. http://www.xml3d.org/wp-
content/uploads/2010/11/XML3D-TPAC-ks-2010.pdf.

SONS, K. 2013. Towards a 3D transmission format for the Web.
1–7. http://www.perey.com/ARStandards/[Klein]3dtf-
position-paper_Ninth_AR_Standards_Meeting.pdf.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND

SLUSALLEK, P. 2010. XML3D: Interactive 3D Graphics for
the Web. Proceedings of the 15th International Conference
on Web 3D Technology 1, 175–184.

STAMOULIAS, A., MALAMOS, A.G., ZAMPOGLOU, M., AND

BRUTZMAN, D. 2014. Enhancing X3DOM declarative 3D
with rigid body physics support. Proceedings of the
Nineteenth International ACM Conference on 3D Web
Technologies - Web3D ’14, ACM Press, 99–107.

STEIN, C., LIMPER, M., AND KUIJPER, A. 2014. Spatial data
structures for accelerated 3D visibility computation to
enable large model visualization on the web. Proceedings
of the Nineteenth International ACM Conference on 3D
Web Technologies - Web3D ’14, ACM Press, 53–61.

SUTTER, J., SONS, K., AND SLUSALLEK, P. 2014. Blast: A Binary
Large Structured Transmission Format for the Web.
Proceedings of the Nineteenth International ACM
Conference on 3D Web Technologies - Web3D ’14, 45–52.

THREE.JS. 2012. https://github.com/mrdoob/three.js/wiki/Features.
TO, D., LAU, R.W.H., AND GREEN, M. 2001. An Adaptive

Multiresolution Method for Progressive Model
Transmission. Presence: Teleoperators and Virtual
Environments 10, 1, 62–74.

WEN, L. 2014. LPM : Lightweight Progressive Meshes Towards
Smooth Transmission of Web3D Media over Internet. 95–
103.

WORLD WIDE WEB CONSORTIUM. 2013. Web Workers.
http://dev.w3.org/html5/workers/.

X3D. X3D/Canvas : Animation and Interactivty.
http://www2.it.nuigalway.ie/~sredfern/CT404/05.pdf.

X3DOM. X3DOM Documentation: Tutorials.
http://doc.x3dom.org/tutorials/.

XML3D. Tutorial « Animation : XML3D.ORG.
http://xml3d.org/tutorial/#Animations.

YANG, S., KIM, C.-S., AND KUO, C.-C.J. 2004. A Progressive
View-Dependent Technique for Interactive 3-D Mesh
Transmission. IEEE Transactions on Circuits and Systems
for Video Technology 14, 11, 1249–1264.

ZAKAI, A. 2011. Emscripten. Proceedings of the ACM
international conference companion on Object oriented
programming systems languages and applications
companion - SPLASH ’11, 301.

