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Abstract 
 
The main motivation of this paper is to provide a current state and 
a brief overview of animation on the web. Computer animation is 
used in many fields and it has seen a lot of development in the 
recent years. With the widespread use of WebGL and the age of 
powerful modern hardware available on small devices, 3D 
rendering on the browser is now becoming commonplace. 
Computer Animation can be described as the rendering of objects 
on screen, which can change shape and properties with respect to 
time. There are many approaches to rendering animation on the 
web, but none of them yet provide a coherent approach in terms of 
transmission, compression and handling of the animation data on 
the client side (browser). And if computer animation has to 
become more accessible over the web, these challenges need to be 
addressed in the same “minimalistic manner (requirement wise)” 
as every other multimedia content has been addressed on the web. 
We aim to provide an overview of the current state of the art, 
while commenting on the shortcomings pertaining to current 
formats/approaches and discuss some of the upcoming standards 
and trends which can help with the current implementation. 
 
CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism—Animation 
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1 Introduction 
 

1.1 What is Animation? 
 
Computer animation is rendering of sequence of images on the 
screen, or can be perceived as an intuitive way of showing 
visualization to the user. It can be either interactive (Character 
animation), illustrative (Simulations) or entertaining (Motion 
Cinema, CGI). When concerned with high end realistic outputs, as 
in animation movies, the heavy duty rendering is typically carried 
out on render farms, where the end product is in the form of a 
video file which can be easily encoded and transmitted with 
different array of algorithms and techniques available. The  
purpose of this paper is not survey these techniques; we are 
concerned with real time rendering, based on the underlying 
transmitted mesh data, on the browser, to the array of output 
terminals available today in consumer space. 
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Animation of complex objects are represented as either a set of 
points, mathematical equations or polygonal surface meshes. 
Animation of an object can be thought of as applying a set of 
geometric transformations or Interpolations from one set of key 
frames to another. The polygonal surface meshes, which are most 
commonly used data set type for animating an object, should 
primarily contain the following types of data to facilitate real time 
rendering: 1) Surface representation of the object with minimal 
error range and 2) A mechanism to provide generation or fetching 
of object properties (such as mesh vertex positions, triangle shape, 
texture, normal etc.) which can help in the subsequent animation 
process.  
 
Animation as a process can be of different types depending on 
how the data is handled and what sort of calculations are applied 
to it: 
 
 Animation of Static Objects: Any 3D object, irrespective 

of any other force that may be acting upon it, can be 
animated; either by applying various transformations to the 
camera or by numerically integrating the object properties 
over time based on some parameters. This is a very basic 
kind on animation that can be achieved without any 
complementing data from the object. Rigid bodies are the 
most common physical representation systems, here the 
object can be defined as one consisting of a shape in space, 
and having a volume. This volume is fixed and it doesn’t 
change or deform in shape over time. They can exhibit 
physical properties as moving, rotating, experiencing and 
exerting physical forces.  

 
 Animation of Deformable Objects: Deformability can be 

defined as change in shape or volume due to application of 
external forces. Deformable objects have their own set of 
physical properties and they exhibit complex motion that 
needs to be taken into consideration while animating. Some 
applications and examples are: Articulated Bodies 
(Character Animation), Elastic Objects (Cloth, Hair etc.), 
Flexible characters (fluids etc.), Procedural (height maps, 
crowds etc.) and skinning. 

 
The principal contribution of this paper is that it forms the first 
survey in the state of the art into animation on the web; stating the 
specific challenges that web-based animation faces, reviewing the 
efforts made so far to address them, and discussing as to where 
the future may lie. 
 
1.2 Overview Of The Challenges 
 
Animation on the web as compared to normal animation comes 
with its own set of challenges and requirements. Regular 
animation maybe carried out by accessing a sequence of 3D 
models or by virtue of some sort of physic-based methods, which 
are employed to create a time based state of the animation model 
called key-frames.  
 
For successful animation, there should be sufficient control points 
or governing rules to create key-frames. Using some form of 



extrapolation or interpolation techniques, subsequent frames are 
generated and rendered, in a time-elapsed manner, onto the screen. 
 
Computation and rendering of complex 3D objects is processor 
intensive, and level of detail (LOD) techniques are sometimes 
utilized in order to expedite the process. LOD techniques increase 
or decrease the complexity of the 3D object depending on the 
distance of the object from the camera. In online rendering, with a 
modern web browser as our canvas (rendering context) the 
paramount information is to have all the required data files for 
computing and rendering in order to reproduce the animation on 
the client end. But animation data can be voluminous and require 
a lot of space, which is not desired on a sandboxed environment 
as in a browser, hence efficient compression algorithms need to be 
applied on the base animation file, so that it can be transmitted as 
fast as possible and can be rebuilt with minimal information. 
Employing various LOD techniques can further reduce the data 
for transmission. And these transmitted data can be sent in a 
structured manner to reduce the computation time on the client 
side. JavaScript is mostly used to process data and rendering. 
 
There are lots of research for compression and transmission of 
static 3D objects [Avilés and Morán 2008; Rossignac 2004] and 
dynamic 3D [Müller et al. 2005; Kao et al. 2010; Cao et al. 2014] 
objects and some of these techniques can be extended for 
animation files. But there is lack of uniformity among the various 
techniques used as well as among various technological standards 
on the web [Jones 2011; KhronosGroup 2014]. Hence, one 
method could decimate the whole 3D object and employ a spatial 
data structure in order to traverse through the structure for 
different LOD, or another would split the 3D object in a coherent 
manner and transmit in a structured manner. It all boils down to 
the particular requirement or the format of the existing 3D object. 
There is a need for a schema-less, encoding agnostic, structured or 
compatible format which could support 3D files without any 
dependency.  
 
2 Problems and Challenges 

 
2.1 Transmission Of Data 
 
Animation of a 3D object or scene requires transmitting extra data, 
beyond that which is required to render the scene statically. 
Depending on the context, this extra data may dwarf the original 
static data source. Transmission of data via the internet uses basic 
and well established protocols such as TCP and UDP. At the 
lowest level, the basic problem associated with these networking 
protocols resolve around latency (TCP), accuracy (UDP) and 
bandwidth (both). Latency, in this context, can be perceived as the 
time needed to fully refine the 3D object since the time of 
application start up, and the time to refine the model based on the 
user interaction and different point of views. It is one of the most 
critical issues that a low powered client device can have, but 
considering that nowadays the so-called “low powered” mobile 
devices are equipped with so much processing power that the 
negative impact on the interactivity of the application mostly 
depends on network bandwidth and how the transmission is 
structured. 
 
Despite dramatic improvements in recent years, mobile network 
connections still largely suffer from low bandwidth, and moreover 
these characteristic change with mobility and geographic location. 
Therefore, it is important that the data is transmitted in a 
structured manner and there is minimum possible interaction 
between server and client. As Sutter et al. [2014] points out, 
current formats allow for compression and binary transmission 

but lack any internal structure for transferring more than a single 
resource of a specific type. Thus, the number of requests to the 
server increases with the number of resources within a scene or 
object. In which case, if bandwidth is sufficient, latency becomes 
the limiting factor. 
 
The transmission of 3D data is usually a two-step approach. First, 
the object structure is sent to the client. Second, the handling and 
processing of the data at the client end. The 3D data format for the 
web can be categorized as either text-based or in binary format. 
Formats encoded as text are human readable, thus their file size is 
bulkier. But the native HTTP’s GZIP compression does an 
excellent job of compressing it. A typical 3D scene or object 
structure(s) contains references to all the external resources such 
as meshes, images, textures, and animation data. The 
XMLHttpRequest (XHR) API is used to request each resource 
separately and they are transmitted using JSON, XML, binary 
XHR or any of the domain specific formats. 
 
Another transmission data format suggested by Behr et al. [2012], 
is to use 2D images to encode the arrays representing the 
coordinates, normals and other attributes. This would allow us to 
use various audio-video encoding and compression techniques, 
and on the client side the data can be passed as texture in WebGL 
to the GPU, bypassing all the computation. But this can cause 
some problem in some older devices.  
 
2.2 Compression & Preprocessing 
 
The large amount of data which needs to transmitted for 
animation thus benefits from some level of compression and 
preprocessing, in order to reduce the time taken to transfer the 
data. However, as pointed out by Evans [2014], the balance 
between compression and speed is delicate, as complex 
compression can take time to decompress within a browser 
context, which is required to use interpreted JavaScript to do the 
work (and, thus, is slower). The balance between compression and 
bandwidth has been demonstrated effectively by Limper [2013].  
 
Every mesh and its animation data is defined by: Geometry 
(Vertex Positions),  Connectivity (graph of triangles) [Avilés and 
Morán 2008; Alliez and Desbrun 2001; Lee 2013]  and 
texture/color data. On a broad scale, Compression can be divided 
into two groups:  
 
Single Rate Compression: encodes and decodes the 3D object as 
a whole, thus we see the entire 3D object only after the data is 
decoded. These algorithms work by removing the redundancy in 
the dataset, while making no assumptions about its complexity, 
regularity or uniformity. Although these methods can achieve 
really good compression ratios, they are unsuitable for the 
network [Rossignac 2004]. For readers interested, we direct them 
to these comprehensive survey papers as a starting point [Alliez 
and Gotsman 2005; Avilés and Morán 2008; Ewiner 2005] 
 
Progressive Compression:  Progressive compression of 3D 
meshes uses the concept of refinement over a period of time. The 
idea is to transmit the crude approximation first, then predict 
intermediate vertices and either transmit the residues for the 
prediction or generate refinement of the mesh progressively. 
During decoding the connectivity of geometry is reconstructed 
incrementally from the transmission stream. The main advantage 
here is the minimal wait time for the user as intermediate states 
are transmitted through the network. Hoppe [1996] proposed 
progressive meshes (PM) in his seminal paper: a progressive mesh 
is obtained from a simplified base mesh and a series of vertex 



splits (vsplits), which are used to refine the base mesh into a more 
refined and detailed mesh. Hoppe et al. took this further and 
developed view-dependent progressive meshes (VPM) where 
features contributing to the visible part is given priority for 
transmission. [Hoppe 1997; To et al. 2001; Yang et al. 2004]. 
Garland et al. proposed [Garland and Heckbert 1997] a method 
based on simplifying the vertex pair in the mesh iteratively, which 
was accurate and had a very low computation time. The simplified 
edge sequence is determined by the quadric error metrics (QEM) 
– a quadric measure which is a matrix that represents the sum of 
the squared distances from the vertex to the planes of neighboring 
triangles, is associated with each vertex. 
 
Geometry videos [Briceño et al. 2003] offer a different approach, 
based on the geometry images of [Gu et al. 2002]. The mesh is 
first parameterized, then re-sampled over a regular grid in space. 
The result is a 2D image with three channels, for x, y and z 
coordinates. The mesh geometry is stored or transmitted simply as 
an image stream, which can be compressed using existing video 
compression methods. 
 
2.3 Rendering  
 
In this section, we briefly survey the principal rendering context 
for web-based animation. WebGL has been used for real time 3D 
visualization over the web, which is an imperative approach to 3D 
web graphics [Jankowski et al. 2013; Coughlin 2014]. It uses the 
HTML5 canvas element and JavaScript to expose low level 
graphics API which is based on OpenGL ES 2.0 (a restricted 
version of the OpenGL API, originally designed for embedded 
systems, but capable of compiling vertex and fragment shaders). 
During initialization of the WebGL context, the shader code is 
compiled and copied onto the video card memory to be executed 
on the GPU. 3D data is fetched over the Internet using any of the 
data-interchange formats (See section 3.4). These fetched data are 
stored in ArrayBuffers, with the recent TypedArray specification 
[Herman and Russell 2013; Ecma International 2013], which 
allows for low level manipulation in JavaScript and moreover, 
they are perfect for parallel decoding in the GPU, as data can be 
copied with zero overhead between the web worker [World Wide 
Web Consortium 2013] and the main thread. 
 
Indexed 16-bit arrays: The current limitations are mainly in 
terms of the current specification of the rendering API. In 
comparison with the standard OpenGL specification, the 
glDrawElements() function used for mesh rendering only allows 
GL_UNSIGNED_BYTE and GL_UNSIGNED_SHORT types for index 
array, limiting it to a maximum of 65536 vertices in an array. To 
render larger meshes, the mesh needs to be split into sub-meshes 
with number of indices not exceeding this limit. 
 
Large Memory Footprint Of Declarative Languages: As Sons 
[2010] pointed out, that both WebKit and Mozilla represent the 
text within an HTML element as native “text nodes” within the 
DOM data. As a result both currently store the full text 
representations of all vertex data in the DOM, which increases the 
memory footprint. 
 
DOM onProgress Event: While using the Progressive Image-
based transmission method, due to the periodical notification of 
the onProgress event, there could be cases when only 
approximations of the sub images are calculated. Some web 
browsers employ a better approach, where the onProgress event 
wouldn’t be time based but would only be triggered after 
completion of some event such as loading up of one sub image. 
 

3 Survey of Current Approaches 
 
3.1 Transmission over the Web 
 
Computer animation files exported from 3D modeling 
applications are huge in size, for transmission over the web, let us 
define the process, whereby a lightweight HTML pages holds the 
DOM structure and embedded script code and all the other 
external data such as mesh, vertices, animation data, and images 
are separately requested over the HTTP protocol. Here, we 
compare some of the current solutions and methods :[Doboš et al. 
2013; Sutter et al. 2014] 
 
Binary transmission: A very simple and common approach 
which is used in XML3D [Sons et al. 2010; Sons 2013], X3DOM 
[Stamoulias et al. 2014; X3DOM], glTF [KHRONOS GROUP 
2012] and Three.js[Cabello 2010]. The data being transmitted is 
encoded in textual representation (e.g. XML or JSON) and the 
external data is requested using a XHR request separately.  
 
Image Based: Here, the mesh data is encoded into images, which 
presents us with the opportunity to effectively use the 
underutilized power of the GPU on the modern systems. Encoding 
geometry information inside 2D images is a very promising 
prospect. Image decoding is done natively in the browser, 
decoding vertex data to the GPU totally bypasses any JavaScript 
based decoding. Sequential Image Geometry (SIG) [Behr et al. 
2012] extends this approach further by adding functionality for 
quantization and progressive loading.  
 
Domain Specific: There are many solutions for streaming static 
3D meshes, But a 3D object not just consists of a mesh, but also 
contains other information such as texture, normals etc. Hence, it 
can be hard for any methods to be extended to all kinds of 3D data. 
Solutions like OpenCTM [Geelnard 2009] and WebGL-Loader 
[Chun 2011; Blume et al. 2011] are lossless and efficient binary 
representations. Both formats are converted to TypedArray, which 
needs to be processed on the client side. Compared to image 
based GPU solution, it can have a slower decoding speed. 
 
3.2 Compression and Preprocessing  
 
Level of Detail: Another issue is the reduction of quality and 
detail of the mesh in interactive applications. LOD concepts such 
as Progressive meshes [Hoppe 1996] help render according to the 
scene details either by mesh simplification process or by 
exploiting progressive transmission and decompression schemes. 
 
Mesh Level of Detail: Representation of objects based on their 
distance from the camera with lower LOD for distant object and 
higher LOD for nearer object, the interactivity and rendering of 
the 3D scenes can be improved a lot. According to [Savoye and 
Meyer 2008], there are no algorithms that excel at simplifying 
animated models and in achieving high fidelity of the original 
mesh. Either there are quantization metric measures for surface 
simplification and preserving the topology using Quadric Error 
Metric (QEM) by [Garland and Heckbert 1997]; or the most 
popular real-time triangle reduction for polygon manifolds, 
introduced by Hoppe et al., Progressive Meshes  [1996]. Ensuring 
the best quality of a mesh simplification requires huge 
computational costs, and sometimes for no significant visual 
improvement.  
 
Animation Level of Detail: Simplification techniques work well 
for static meshes but not so much for deformable objects. 
Deformation Sensitive Decimation (DSD) by Mohr and Gleicher 



[2003] was based on the idea of QEM [Garland and Heckbert 
1997], for measuring the contraction cost of edges. Pilgrim et al. 
[2006] present Progressive Skinning – A view and pose 
independent methods for automatic skeleton simplification for the 
methods given in [DeCoro and Rusinkiewicz 2005]. The method 
uses an edge collapsed contraction with QEM and a linear 
skinning weight update rule. Kavan et al. introduced in [Kavan et 
al. 2008] a novel representation of virtual characters called 
Polypostors with 2D polygonal impostors. Mukai and Kuriyama 
introduce the idea of motion level of detail in [Mukai and 
Kuriyama 2007] using an LOD control method of motion 
synthesis with a multilinear model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 Rendering Animation 
 
Animation in the WebGL context can employ many different 
concepts such as: 1) programmatically updating properties of the 
visual object each time through the run loop; 2) Using key frame 
animation, intermediate frames are generated via interpolation; 3) 
Using morph targets to deform geometry by blending among a set 
of distinct shapes. 4) Using skinning to deform geometry based on 
the underlying skeleton. And 5) Implementation of some/all of the 
above using GPU based methods, where the deformation of 
vertices and fragment values are computed on the GPU in the 
shaders. 
 
For rendering progressive animation in WebGL, the animation 
should be reconstructed first after the minimal transmission is 
done, a coarse representation is rendered on the screen. Then as 
more data is downloaded, and more information becomes 
accessible, the compressed animation is refined. Mostly these 
refinement methods can be classified into 1) Connectivity 
updating - which changes the feature shapes of an animation, and 
2) Geometry updating – which changes the complexity of the 
motion.  
 
In real-time rendering, 2D images are used to store textures that 
are applied and interpolated during the shading process to flat 
surfaces in 3D space. Similarly, Normal maps and displacement 
maps give the illusion of more structured details. For 3D data 
transmission, textures can be used by using the quantization 
threshold [Rodríguez et al. 2013; Maglo et al. 2012; Schwartz et 
al. 2011] which represents a factor by which to quantize the 

geometry, which can be transmitted separately in a JSON file. 
Once the client side application knows of the factor, the 
decompression of the PNG takes place to retrieve the chunk of 
relevant data into a WebGL texture. Behr et al. present a detailed 
explanation on various techniques involving 2D images for data 
transmission. [Behr et al. 2012] 
 
Using VBO in WebGL: Declarative languages provide types for 
data entries in the structure which can be directly mapped to an 
OpenGL Vertex Buffer Objects (VBOs). These set of vertex 
attributes can then be packed into Vertex Array Objects (VAOs) 
(available in WebGL 1.0 through OES_vertex_array_object 
extension) and called in a single API call to reduce the state 
change overhead. In comparison, when data is transmitted in 
binary or any other domain specific manner, different subsets of 
3D data is sent to the shader to be rendered. To draw such highly 
frequent changing data in the VBOs, they need to be constantly 
created and/or updated and the data needs to be passed from main 
memory to client-side index array which proves to be a huge 
performance bottleneck for WebGL. One approach to reduce the 
vertex buffer switches, is to have all the mesh data in a single 
image (either a texture atlas or map) and create one VBO on the 
JavaScript layer and bind it with this single image geometry and 
have all the other data directly uploaded as textures in the GPU. 
This is similar to the technique used in [Behr et al. 2012], 
[Schwartz et al. 2011], [Englert et al. 2014] and [Stein et al. 2014]. 
This allows the GPU to store more mesh data, and calculate all the 
decoding and vertex coordination on the fly. 
 
3.4 How existing formats and/or libraries deal 

with Animation 
 
3D graphics on the web features various file formats and libraries, 
each with its own advantages and disadvantages. In this paper, we 
will not focus on the general functionality and working aspect of 
these. There are many surveys available which do a fine job 
explaining them [Evans et al. 2014; Coughlin 2014]. Here, we 
will only focus on how these file formats or libraries deal with 
animation. 
 
X3D: X3D is a royalty free ISO standard defining an XML based 
file format for representing Web3D computer graphics and was 
first accepted as an ISO standard in 2004. X3D is designed to 
deliver a lightweight and balanced web-based application, which 
offers easy to use and develop interactive real-time 3D content. 
The X3D standard supports a wide number of advanced 3D 
graphics functionalities, including key frame animations, 
humanoid animations (H-Anim) etc. [Stamoulias et al. 2014].  
X3D consists of nodes which handle various types of jobs within 
the framework, In order to handle key frame animations it goes 
through the following process: The TimeSensor node is used to 
control animation as time passes. An OrientationInterpolator 
node sits between the TimeSensor node and the Transform node 
and turns the events into vectors. Based on the update time step, 
the object properties are updated in order to achieve the animation. 
[X3D; H-Anim]. In [Schilbach 2014], a framework for animation 
is introduced based on the existing model but it is mainly aimed at 
generating animated visualization to conduct quantitative 
experiments and not on real time realistic animation.  
 
X3DOM & X3DOM Binary Geometry (BG): X3DOM allows 
X3D documents to be easily embedded directly into web 
applications by integrating X3D into the DOM [Behr et al. 2010; 
Stamoulias et al. 2014].  X3DOM operates as a connector which 
is responsible for the synchronization of the browser frontends 
and the X3D backend, by monitoring DOM updates in the X3D 

Figure 1: Depending of various factors, mesh can be decimated to 

various levels. Images reference from [DeCoro and Rusinkiewicz 

2005] and [Lavoué et al. 2013] 



Figure 2: An example of animation in three.js showcasing 

blending and morphing [Cabello 2010]. 

code. The raw binary encoding of indices and vertex attributes are 
considered, along with lightweight structure description in the 
human readable format by packing them in a grid format such as 
in images and video. It is mainly possible because of the 
TypedArray [Ecma International 2013] specification of JavaScript, 
a recent addition to JavaScript to handle the binary data efficiently. 
TypedArray are like a slab of memory, more like how the array 
works in C, which allows downloading and manipulation of the 
binary data directly in a web page using JavaScript, and they can 
be transferred with zero copying overhead between a Web Worker 
[World Wide Web Consortium 2013] and the main thread and 
onto the GPU, thus minimalizing the CPU-GPU overhead. It does 
support animation and interaction to some degree without the low 
level flexibility. [X3DOM]  
 
XML3D: XML3D [Sons et al. 2010; Sons 2010] is a minimal 
extension to HTML5 for interactive 3D content. It defines a small 
set of new elements to describe a scene graph with 3D geometry, 
surface shading, and lighting. In addition, it features the 
declaration of generic data structures as well as the declarative 
language. Xflow  [Klein et al. 2013] is used to perform vertex and 
images processing on the data. XML3D supports a wide range of 
3D related features, such as skinned mesh animations and 
Augmented Reality [Klein 2013] without adding a large amount 
of new DOM elements.[XML3D] 
 
glTF: glTF is created from a Collada [KHRONOS GROUP] 
digital asset exchange (.dae) files which became an ISO standard 
in 2013. Collada is widely supported as an export file type option 
across many types of 3D content creation software. Every glTF 
asset is comprised of various files, which is embedded in a JSON 
based description that references multiple binary files. The JSON 
description contains all information necessary to extract the 
embedded information inside the binary files. Using the JSON 
format for the scene hierarchy is practical because it is much more 
easily parsed than XML and is also more compact so will take 
less time to download as well. Textures are simply PNG, JPEG 
etc., hence there is no need for further modification as all the 
major browsers come with these decoders. The mesh binary data, 
is raw binary data meant to be passed directly into buffers. 
Optional Open3DGC encoding is available [Mammou 2013] 
which is designed for fast decoding in JavaScript or C++ using 
arithmetic algorithms.  
 
A common approach in XML3D, X3DOM and glTF are 
unstructured binary XHR using an additional document for 
structure information.  
 
Sequential Image Geometry (SIG): Here, instead of 
transforming and resampling of the original mesh to a regular 
structure, it utilizes an image file structure to store unlinked vertex 
data and indices. The vertex arrays are split into 8-bit chunks of 
decreasing relevance that are distributed as a sequence of images. 
The approach supports quantization and progressive loading as 
long as the transmission is in correct order. [Behr et al. 2012] 
 
OpenCTM : OpenCTM is an open binary format for 3D mesh 
compression [Geelnard 2009]. It provides a compact 
representation of 3D triangle meshes using the entropy-reduction 
technique with the state-of-the-art Lempel-Ziv-Markov chain 
algorithm (LZMA [7Zip]) also offering good compression rates, 
while still providing a relatively fast decompression. OpenCTM is 
a mainly a lossless compression technique but also allows to use a 
lossy compression in order to improve the compression ratio. 
[Chávez et al. 2013; Limper et al. 2013] 
 

WebGL-Loader (Or UTF-8 Compression): The UTF-8 
compression or also known as the WebGL-Loader is a JavaScript 
library for compact mesh transmission. [Blume et al. 2011; Cozzi 
and Riccio 2012; Chun 2011], which was developed for Google 
Body project - a browser based human anatomy project. The UTF-
8 compression is a lossy technique. It improves compression by 
predicting the normal direction from neighborhood positions of 
incident triangles, also performs a vertex cache optimization on 
the index list [Forsyth 2006]. Instead of a simple delta encoding, a 
more advanced parallelogram prediction is used for the attributes, 
it predicts the next vertex position by constructing a parallelogram 
with the last three vertices of the triangle strip. The normals are 
predicted using the cross product of the edges of every triangle. 
The data is encoded using the UTF-8 character set: 16-bit values 
taking 1-3 bytes per character. So, the lower the values, the lesser 
memory the algorithm requires for encoding a mesh. And the 
native GZIP implementation of the browser, provides a fast 
decompression. 
 
Three.js: Three.js has becomes a very popular option on the web, 
it provides good performance and good abstraction making it 
easier to use than dealing with low level initialization. While 
dealing with animation, it deals with skeletal animation, morph 
shapes and key frames [Cabello 2010; 2012], It allows “baked” 
animation i.e. where vertices per frame are available in the file, 
similar to how morph target or blend shapes work, and also 
blending and interpolation among the key frames. It supports 
many types of blending (additive, multiplying and subtractive) 
and uses Catmull-rom spline method to interpolate among given 
frames [Cabello 2011a; Cabello 2011b] Catmull-rom spline are 
means of representing a curve, by specifying a series of points at 
interval along the curve and then using a mathematical function 
that then calculates the additional points along the way. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Three.js supports animation by taking in a JSON, which consists 
of parameters such as position, rotation, scale, time etc. The 
library itself provides several scripts for exporting and/or 
converting  popular 3D formats (such as format discussed above)  
into a three.js compatible JSON. Currently the library only 
handles mesh models, non-manifold and other data formats of the 
objects are not supported. For key frame animation, the weights 
associated with vertices must be mentioned for proper 
representation, and it supports multiple animations for a single 
object. [Ray 2014] 
 
Babylon.js: Babylon.js is another open source framework, 
supported by Microsoft. While Three.js attempts to bring wide 
range of animation features, Babylon.js takes a more target 
specific approach and focuses more on being a game engine 



equipped with collision detection and a physics engine. In terms 
of 3D object animation, it supports key frame animation and 
skeletal animation [Microsoft 2013], and also importing scenes 
from various 3D formats such as OBJ and FBX. A skeleton is 
specified by providing the bone information, weights and 
influences associated with each vertex position.  
 
SpiderGL : SpiderGL is a 3D graphics library for real time 
rendering [Di Benedetto et al. 2010], it provides a data structure 
and algorithms to ease development and similarly aims at 
providing an abstraction for developers to use the underlying 
graphical capability of WebGL. It supports features such as 
asynchronous content loading etc. But it doesn’t seem to support 
animation as such.  
 
4 Future Trends Or Discussion  

 
4.1 Transmission Of Data 
 
The Web is in need of a binary transmission format for 3D data 
that allows for domain-specific or at least a general standard of 
compression technique for animation data. As outlined in [Sons 
2013], every binary transmission format for the Web has to be 
designed to reduce the number of requests, handle network 
characteristics and facilitate client applications in providing a 
good user experience. All approaches discussed here address only 
a subset of the challenges that need to be solved for a general, 
common, and efficient transmission of 3D data. With regards to 
3D asset transmission, a prominent problem is the lack of 
progressive streaming of all relevant mesh and texture data, with a 
minimal number of HTTP requests. Furthermore, there is still no 
established format for a joined, interleaved transmission of 
geometry data and texture data. 
 
[Limper et al. 2014a] aims to minimize the number of HTTP 
requests, by progressively transmitting an arbitrary number of 
mesh data chunks within a single SRC file. This file contains the 
reference to all the resources of data and progressively downloads 
them.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another approach to solving the bandwidth problem is to use 
caching strategies; caching is necessary to improve the 
performance by avoiding redundant data transfer. Caching 
prevents sending large amount of data, but it requires bi-
directional communication which is not available HTTP protocol. 

WebSockets can be used, which could improve latency as it 
supports a full duplex communication channel. Web Sockets 
allow the client and server to stream data bi-directionally but 
requires a protocol understood by both ends. However, no general 
protocol for the transmission of 3D data has been established yet. 
To improve upon the lack of progressive downloads, there is 
already W3C draft in the works for the next standards for HTTP 
2.0 and Streams API, which will bring progressive downloads to 
its feature list.  
 
A more challenging problem worthy of further investigation is 1-
D streaming [Lee 2013], which combines the geometry and 
connectivity operators into the more general refining operators. 
To achieve different progressive representations for animation, 
other progressive methods such as valance-driven can be 
compared.  
 
Gobbetti et al. [Gobbetti and Marton 2012] proposed a method 
that also uses image-based mesh description format. It resamples 
the model data in order to build a tight atlas parametrization of the 
mesh geometry. This enables them to use the atlas images also for 
multi-resolution transmission and rendering via simple mipmap 
operations. 
 
Similar to X3DOM’s BinaryGeometry node, Lee et al. [2010] 
propose to reduce the size of binary mesh data for efficient 
storage and transmission, using a straightforward local 
quantization scheme. They argue that geometry compression for 
mobile graphics requires a careful choice of the compression 
method in order to maintain interactive decompression rates. 
 
4.2 Compression and Preprocessing 
 
Lavoué et al. [2013] state some of the issues that are overlooked 
by the scientific community: Existing compression techniques 
give more importance to compression ratio, where as in online 
transmission, improving quality of level of detail is more 
important than being clever and gaining a few extra bits. Few 
recent researchers have taken LOD into serious consideration. 
[Peng et al. 2010; Lee 2013] 
 
Perfect level of detail management requires efficient handling of 
the 3D object attributes such as color, texture and other 
information regarding the data and animation. They need to be 
progressively maintained and processed as LOD of geometry and 
connectivity is handled. Some example of recent techniques are 
[Lee 2013; Limper et al. 2014a; Schwartz et al. 2011; Behr et al. 
2012]. 
 
Wen et al. [Wen 2014] presents a similarity aware 3D model 
reduction method, which searches for  similar component in the 
3D model and reuse them through the construction of Lightweight 
Scene Graph (LSG), It doesn’t require any decompression at the 
client end and required LOD is obtained with help of instance 
rendering. 
 

The objective of progressive compression is to speed up 
transmission over the network, but if decompression takes as long 
on the client side, then there is no point in applying fancy 
techniques and data structures. It needs to rely on simple yet 
effective algorithm, which could easily transcribe itself onto 
JavaScript and WebGL.  
 
 
 
 

Figure 3: Multiple XHRs to server to download resources is not 

good., Idealy streaming XHR should consist of only one 

request.Image reference from [Limper et al. 2014b] 



4.3 Rendering 
 
JavaScript has evolved tremendously in the last few years, from 
being the scripting language of the client-side Web to a full-
fledged comprehensive language used in almost any application 
area. It runs on a sandbox environment on a browser but now with 
the help of frameworks such as node.js or Rhino, it is used as a 
standalone language. One of the biggest drawbacks is its slow 
execution speed when complied just-in-time (JIT). In an attempt 
to bring JavaScript execution speed closer to native code, asm.js 
was developed, which enables a strict subset of JavaScript 
language; stripping if off of some of the features, allows for 
performance improvement such as ahead-of-time optimization 
and hence speeding up the execution speed. Another strategy has 
been used to enable the developer to bring their native(C/C++) 
legacy code to the browser, Google Native Client is one such 
sandboxing technology which would allow safely running native 
codes from a web browser.  Emscripten [Zakai 2011] is another 
such attempt, it’s a transcompiler – it takes bit code as input and 
emits JavaScript code (in asm.js).   
 
Parallelism in JavaScript: Client side processing in JavaScript 
when dealing with large amount of data can stall the performance, 
as JavaScript is single-threaded. WebWorkers were introduced in 
HTML5 and help in parallel decoding by taking care of some task 
in the background and then passing the data to the main thread 
through message passing. Apart from WebWorkers, other 
technologies that aim to bring parallelism by passing the 
computation onto the GPU are : River Trail [Herhut et al. 2013] 
and WebCL [KhronosGroup 2012] . River Trail provides a 
ParallelArray data structure with primitive operations that operate 
on it and offload the computation to the GPU and the underlying 
OpenCL implementation. WebCL exposes a subset of OpenCL 
1.1 through JavaScript and allow application to harness the power 
of the GPU. 
 
WebGL 2.0: The WebGL 2.0 specification has been under 
development for two years and is approaching release. WebGL 
2.0 is equivalent to OpenGL ES 3.0, although many of the current 
specifications are available as extension packages of WebGL 1.0. 
Some of the major features include occlusion queries – which 
tries to reduce the rendering load on the graphical system by 
eliminating objects from the rendering pipeline which are hidden 
by other objects; transform feedback – capturing primitives 
generated by the vertex shader and recording data into a 
BufferObjects, thus allowing to preserve and resubmit data 
multiple time; Multiple render targets – allows a single draw call 
to write out to multiple targets (texture or renderBuffer); and , 
vertex array objects (VAO) – VAO allows us to store the 
vertex/index binding information for set of objects in a easy to 
manage manner.  
 
Stein et al. [2014] demonstrate using spatial data structure on the 
client end using the latest features of WebGL 2.0 to improve upon 
the shortcomings of the current 3D web environment. They render 
an interactive visualization of large 3D data sets, by employing 
small bounding volume hierarchies to accelerate visibility 
determination. Although they support only static scenes, they 
efficiently handle and render huge amounts of data sets into the 
scene. 
 
Texture Compression: Texture compression can drastically 
reduce the amount of memory consumption in a 3D scene. It can 
also be helpful in transmission. Texture compression support of 
WebGL allows for the direct upload of the compressed textures 
onto the GPU without the need of any processing step. There are 

many WebGL extensions to support various different formats. 
Texture can also contain other data which can be helpful for 
rendering, all the data required for rendering is stored in 2D 
textures, as currently this is what is supported by WebGL, 
although 3D textures are proposed to be supposed in WebGL 2.0 
specification. 
 
5 Conclusion 
 
We have presented an overview of the state of animation over the 
web and the open challenges present in the context. It is clear that 
WebGL as graphical platform and web browsers as a common 
viewport present seamless prospects for graphics over the web. 
With the new working draft of these standards, any or all barriers 
for real time rendering are fast diminishing. But it is also clear 
that there is a need for a common, structured, encoding-agnostic 
and stream able standard for animated content over the web.  
 
Most of the current techniques are built upon a few seminal works 
which have approached the problem in diverse ways. For example, 
one general approach tries to decimate the mesh data based on the 
connectivity, geometry, and using a spatial data structure for 
traversal. While other approaches are more geared towards 
efficient rendering on the client side. Moreover, there is 
surprisingly little work done on bringing real time animation on 
the web, most of it has been focused on transmitting static 3D 
mesh objects. 
 
Nonetheless, there is a lot of research done recently concerning 
WebGL and rendering objects on the web [Congote et al. 2011; 
Schilbach 2014; Stein et al. 2014; Stamoulias et al. 2014].  
WebGL 2.0 promises to bring many more features to the table, 
and there are several interesting avenues that need to be explored, 
such as using the GPU to parallelize the computing process (on 
the browser), protecting intellectual data post-transmission, and 
efficient reproduction of the animation data. Fortunately, the 
landscape on the web is soon catching up with the state of the art 
and promises to bring exciting new features with broadening 
horizons.  
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