
Hybrid Visualisation of Digital Production Big Data

Alun Evans∗ Javi Agenjo Josep Blat
Department of Information and Communications Technologies

Universitat Pompeu Fabra, Barcelona, Spain

Figure 1: Web-based visualisation of multimodal data recorded on set (LIDAR, static image reconstruction, and witness video)

Abstract

In this paper, we present a web application for the hybrid visuali-
sation of digital production Big Data. In a typical film or television
production, several terabytes of data can be recorded per day, such
as film footage from multiple cameras or background information
regarding the set. Interactive visualisation of this multimodal data,
integrating 2D (image and video) and 3D graphics modes, would
result in enhanced use. A browser-based context is capable of this
integration in a seamless and powerful manner, but faces significant
challenges related to data transfer and compression which must be
overcome. This paper presents an application designed to harness
the power of a hybrid web context while attempting to overcome or
compensate for the difficulties of data transfer limitations and ren-
dering power. Results are presented from three, publicly available
test datasets, which represent a realistic sample of data recorded on
a typical high-budget production set.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality; D.2.13 [Software Engineer-
ing]: Reusable Software—Reusable libraries;

Keywords: WebGL, Pointclouds, Big Data, Web, Hybrid, Visual-
isation, Video

1 Introduction

Cinema and television production are becoming increasingly digi-
tal, and data sourced from various modalities are now an integral
part of the production stages. Beyond the footage coming from a

∗e-mail:alun.evans@upf.edu

single main camera of the recent past, a modern production set will
make use of multiple witness cameras, 3D laser scanners, spherons
or RGBD cameras, aiming at gathering as much data as possible re-
garding the surrounding environment, and facilitated by larger and
cheaper storage devices. The traditional barriers between produc-
tion, pre- and post- production are being broken. The large amount
of data from different sources has to be understood, especially in
terms of its quality and suitability, and has to be integrated in the
workflow.

A standard approach to use this data is to view and analyse each
modality separately, as part of the post-production process. How-
ever, this approach suffers from several problems: the process takes
place largely away from the production environment; users must be
present in the same location as where the data is physically stored;
and viewing each modality individually is a process requiring the
use of separate software for each modality, which makes it difficult
for users to understand the integrated picture, and slows the whole
process down. Addressing these issues is the primary motivation
for the work in this paper.

We present a web-based visualisation application which allows re-
mote users to access the production data recorded on-set, open-
ing new possibilities for remote collaboration in the production
and post-production process. The hybrid interactive visualization,
tightly integrating video, static image, hypertext and real-time 3D
graphics, which is enabled by the 3D web, is more difficult to repli-
cate with traditional offline methods [Jankowski and Decker 2013]
[Gonzales et al. 2009], and is better for the user. We address the
web challenges to deal with big data in this context and our appli-
cation demonstrates new functionalities in a challenging industrial
environment.

2 Background

Jankowski and Decker’s [Jankowski and Decker 2012; Jankowski
and Decker 2013] research suggests that a dual-mode user interface,
integrating traditional hypertext and 3D graphics, leads to greater
user engagement, and better and more efficient understanding, than
interfaces where the modalities are shown in a more traditional way
of hypertext, figures and captions, where the individual modes are
more separate. Inspired by this paradigm, our work tightly inte-
grates 2D image data (video and still images) and metadata within
an interactive 3D context. When carried out in an offline applica-



tion, such a hybrid approach requires specific software engineer-
ing to allow individual video frames to be passed to the 3D ren-
dering engine as texture data [Gonzales et al. 2009]. However, in
a browser-based context, the HTML5 video element [Pfeiffer and
Pearce 2010] provides a convenient wrapper for reading and ac-
cessing the pixel data provided by videos (and stored in a variety
of formats), as well as providing HTTP 1.1 byte-range access to
server-based files, which facilitates buffering and permits the imple-
mentation of video scrubbing interfaces (where the user can move
forward and backwards through the duration of the video to view
desired moments). Without byte-range access, the entire video is
downloaded linearly, and users could only view frames within the
data downloaded. A rich interactive video interface is required for
an application suitable to review film material, assess its quality and
use it further in production and post-production.

The main technical difficulty in web-based visualisation of 3D data
from industrial digital productions is usually related to the size of
media, and transferring the data from the server to the client. While
3D data compression techniques for web-based transmission are
very well studied in the literature [Evans et al. 2014b], [Limper
et al. 2013] demonstrate that, as bandwidth speeds increase, the
computing power and time required to decompress heavily com-
pressed data becomes the limiting factor, as it makes interactiv-
ity unfeasible. As a result, techniques that emphasise progressive
download and refinement of 3D data (over pure compression) seem
to provide a better user experience [Lavoué et al. 2013][Evans et al.
2014a].

3 Server-Side Processing

Besides the principal camera footage (the so called Dailies), some
key types of data which are typically recorded during a standard
day of film or high-end television production can be grouped as:

1. Multiple witness cameras video, stored in high resolution,
uncompressed formats (either as image sequences or loosely
wrapped into a format such as avi or mov). This footage re-
lates to the core action and is used to support high quality
post-production or visual effects.

2. Pointcloud data, recorded from laser scanning technologies
such as LIDAR, with or without color information. Point-
clouds are used in production and post-production, for exam-
ple, to enable production staff to visualise the set in 3D at a
later date, or as a basis for the generation of digital effects.

3. Other image data, such as multiple static photographs of the
set, spheron images, RGBD images etc. These are primarily
used to assist in the post-production process, although they
are gradually being used more on-set.

Additionally, the data from various sources can be combined. Mul-
tiple LIDAR scans can be registered and stored as a single point-
cloud dataset, representing the entire structure of the set environ-
ment. And feature detection, matching and registration algorithms
can be run on spheron and image data to generate 3D point clouds
of the areas covered by those images. As production tends to store
original format data in the highest possible resolution and bit depth,
and employs lossless (if any) compression, this leads to very large
file sizes. Pointcloud data depends on the source and number of
combined scans, but typically a full-set representation will result
in a file of between 200MB and 1GB. Even static image data from
DSLR cameras means dozens of MB per image, for potentially hun-
dreds of stored images.

Publically available examples of such data are reasonably difficult
to find, largely because the majority of production data is propri-

etary and has very restricted access. However, some large Euro-
pean projects, such as i3DPost 1 and IMPART 2 have made their
generated data available. For this application, we used data from
the IMPART project, the most recent, representative and challeging
available, with permission.

Managing this data (which might be called ‘Big Data’) requires
pre-processing and image analysis in order to extract features or
higher level metadata, etc. In this paper we focus on the process-
ing related to making it suitable for interactive visualisation in a
web-based client, due to the fact that it must be transferred over the
internet, while the visualisation must be interactive enough to be
user friendly. The remainder of this section details these processing
steps used in our application.

3.1 Compression of 2D Image Data

Our system ingests 2D data, and uses simple scripts and command
line tools such as ffmpeg and imagemagick to convert and save
a lower-resolution copy of each file, more suitable for web view-
ing. Video data is converted to OGG-Theora format at medium-
high quality, and downsized to 480p. A single image frame of the
video is also stored at thumbnail resolution, which is later used as
a static placeholder in the visualisation (see below). Static image
data is first saved as JPEG (if this is not already available) and then
a copy is also saved at thumbnail resolution for fast preview in the
visualisation. Similar thumbnail/preview versions are created for
2D image representations of the recorded spheron and lidar scans.

3.2 Progressive Pointcloud Visualisation

Raw LIDAR data from several sensor is registered and stored as
a single file in OFF format (position and color information). We
then use a similar approach to [Evans et al. 2014a] and [Schutz ]
to process the pointcloud data into a format suitable for progres-
sive download to a web-based client. In an offline application, the
pointcloud data is added to a memory efficient octree, which is then
saved breadth first as a series of binary files, containing informa-
tion about the structure and color of each node of the tree. The data
is then ready to be transferred file-by-file to the web-client, thus
gradually increasing the resolution of the downloaded pointcloud,
which is reflected by progressive refinement in the client-side 3D
visualisation (see section 4.1 below).

3.3 3D Reconstruction and Registration

The dataset used for this application includes data obtained via fea-
ture matching and registration algorithms [Kim and Hilton 2014]
[Kim and Hilton 2013a] [Kim and Hilton 2013b], which are used
in order to back-calculate the real position in the scene of the sen-
sor used to record the data. These positions are then registered to
the LIDAR data which is taken as the ground truth reference for
the scene. The result is a set of matrices representing the position
(and, for video camera footage, the orientation) of each sensor in
the scene. These matrices are stored as text files and are associ-
ated with the relevant data files and thumbnails. The results of fea-
ture extraction from multiple 2D data sources such as spheron data,
static image data, and RGBD data are also used to create 3D point-
clouds. While the resolution of this data is much lower than that
obtained by LIDAR scanning, it is still processed using the same
technique presented in Section 3.2, in order to allow progressive
transfer and visualisation, as it is important to have integrated vi-
sualisation of multi-source 3D data, to which interactivity features

1http://cvssp.info/i3dpost action/
2http://impart.upf.edu



are added as described later.

3.4 Scene Metadata and gzip Compression

A JSON scene-description file stores the relative path to each of
the elements of data available to be visualised by the client. All
the data is stored in directories which are served to the web via an
APACHE web server; this is configured in order to enable HTTP
gzip compression of all the file formats to be served to the client.
While this compression has minimal effect on files which are al-
ready compressed (e.g. JPEG or OGG-Theora), it has a significant
effect on the transfer time of the uncompressed binary files used to
store the data for progressive point-cloud visualisation, which are
typically reduced to 60% of their initial size.

4 Hybrid rendering results

The browser application is constructed using a WebGL context as
a basis for all 3D elements in the scene, and using Document Ob-
ject Model (DOM) elements to manage video and image data as
required. The JSON scene description is first downloaded to ini-
tialise the scene.

4.1 Progressive Pointcloud Rendering

For each point-cloud in the scene (i.e. from the LIDAR data and
from the reconstructions from the Spheron /Photos /RGBD) the
browser starts downloading, sequentially, the list of files which con-
tains the breadth-first description of each pointcloud. After each file
is downloaded, it draws the octree to the scene, with each node in
the tree represented by a GL POINT, whose size is that of the width
of the octree node. Point widths are kept constant with respect to
the distance to the camera by multiplying the desired size by the
height of the near projection plane, in homogenous coordinates.

As more data is downloaded, the pointcloud is updated. However,
this is not simply a case of drawing higher-resolution data over the
(previously drawn) lower resolution data, as the lower resolution
data will occlude any higher resolution points. To deal with this
issue, the ’level’ of the octree is tracked, and lower-resolution data
is periodically culled from the draw-buffer (see figure 2). Table 1
shows the time taken to download the 10 test pointclouds, spread
over three scenes, at different resolution levels; the percentages are
of the final draw-buffer size of each cloud. The first view corre-
sponds to the lowest resolution of the octree and it appears within a
second for each cloud. The clouds in each of the 3 scenes are down-
loaded simultaneously and this explains the inconsistent results be-
tween cases with clouds of similar sizes. These values are simi-
lar to those obtained with the technique presented in [Evans et al.
2014a], despite multiple pointclouds (at least three) being down-
loaded simultaneously, and compare well with those state-of-the-art
on the different but related problem of progressive mesh transmis-
sion [Lavoué et al. 2013]. Figure 2 shows a visual representation of
the progressive rendering effect.

4.2 Rendering of 2D video in a 3D context

Once the scene description is parsed, a hidden HTML5 video ele-
ment is created for each video in the scene, and added to the DOM.
The fact that the element is hidden ensures that it does not affect
the 3D visualisation; however, the WebGL API can read the HTM-
LVideoElement in the DOM, and extract the pixels of the current
frame into texture data, which can be used within the 3D scene.

Using the scene metadata as described in 3.3, the application cre-
ates a simple plane mesh, using the position and orientation of each

Figure 2: Progressive and simultaneous rendering of four point-
clouds, with resolution increasing from top-left to bottom-right

video camera in the scene as the model matrix. Then, every draw
frame, the DOM video elements pipe their texture information as
WebGL textures, which are displayed on plane meshes. The result
is the video data being rendered in real time on meshes within the
3D scene with the actual position and orientation of the camera,
providing a tight 2D/3D integration.

To control the playback of the video and to ensure that at most one
video is playing at a time (avoiding needless bandwidth and render-
ing power use), the application features a timeline interface created
as a 2D Canvas and added to the DOM separately. This element
allows the user to select a camera, which then moves the 3D cam-
era to a position immediately behind the plane mesh displaying the
selected camera. Play/pause/stop controls exist for video playback,
and scrubbing allows the user to skip forward and backwards (by
setting the time of the HTML5 video element via javascript). Figure
3 shows a screenshot of the timeline interface and the mesh planes
featuring the video frames, illustrating the enhanced naturalness of
the visualisation. On the other hand, the timeline component is less
tightly integrated in the interface, an issue to be improved in the
future.

Figure 3: Mesh plane with video camera images, and timeline

4.3 Sensor Positions

The positions of the original sensors used for construction of the
pointclouds (LIDAR, photo cameras, spherons) are visualised by



Table 1: Time taken (in milliseconds) to download and render different point clouds at three resolution levels. The clouds in each of the three
scenes were downloaded simultaneously. Bandwidth is clamped to 8mbps.

Dataset Cathedral Patio Studio
Data source Spheron Photos LIDAR Spheron Photos LIDAR Spheron Photos RGBD LIDAR
Num. points 75838 276113 1123222 300405 365155 3000000 314567 315282 442137 670324

First view 464 387 295 620 625 992 356 483 444 294
50% 931 1524 3151 9892 9699 53057 2758 2783 4011 5559
100% 1171 2675 7099 14454 15365 75210 4877 5009 6340 7771

positioning a billboard in the 3D scene at the position provided by
the dataset, which displays a thumbnail of the final image. The
rotation data is not available, so they are rendered as billboards
which always face the camera position. Clicking or tapping on
the billboard displays a lightbox (created with the DOM) show-
ing the original full-resolution image of the sensor. Figure 4 shows
a screenshot of the sensors positioned relative to the scene point-
clouds. Their positions within the 3D scene can be better visualised
using a feature which the user can enable so that coloured vertical
lines are overlaid above each billboard. Different sensor types can
be assigned different colours (see Figure 1).

Figure 4: Sensor positions are visualised by billboards

5 Discussion

Usually, visualisation of production big-data is split between indi-
vidual tools in 2D and 3D, with video and images processed in a 2D
domain then visualised using a thumbnail browsing interface, while
3D data in dedicated 3D production and rendering software, which
makes difficult to get an integrated picture. In this paper we present
an application which takes advantage of the web context to create a
hybrid 2D and 3D visualisation which enables the interactive view-
ing of such data with one application. The application succeeds in
blending these modalities, as well as enabling further advantages
of the web context, machine and platform independence. With We-
bGL and HTML5 elements now supported on all major browsers,
the application can be viewed on a variety of desktop and portable
hardware without specialized software or licenses.

The results presented show that the steps taken (progressive visu-
alisation of pointclouds, pre-compression of videos and images) to
reduce the problems related to remote viewing of big data have been
partially successful, though it is clear that the performance will not
be identical to an application where the data is stored locally. Our
future work is now geared towards taking advantage of browser ac-
cess to specialized hardware such as accelerometers and cameras
in portable devices, and explore the possibilities of mixed and aug-

mented reality applications in this context.

Acknowledgements

This work was supported by the European Commission, FP7 IM-
PART project (grant agreement No 316564), and by the Spanish
EEE (TIN2011-28308-C03-03) project.

References

EVANS, A., AGENJO, J., AND BLAT, J. 2014. Web-based visu-
alisation of on-set point cloud data. In Proceedings of the 11th
European Conference on Visual Media Production, ACM, 10.

EVANS, A., ROMEO, M., BAHREHMAND, A., AGENJO, J., AND
BLAT, J. 2014. 3d graphics on the web: A survey. Computers
& Graphics 41, 43–61.

GONZALES, E., EVANS, A., GONZALES, S., ABADIA, J., AND
BLAT, J. 2009. Real-time visualisation and browsing of a dis-
tributed video database. In Advances in Computer Entertainment
Technology, ACM, 423–424.

JANKOWSKI, J., AND DECKER, S. 2012. A dual-mode user inter-
face for accessing 3d content on the world wide web. In Proceed-
ings of the 21st international conference on World Wide Web,
ACM, 1047–1056.

JANKOWSKI, J., AND DECKER, S. 2013. On the design of a dual-
mode user interface for accessing 3d content on the world wide
web. International Journal of Human-Computer Studies 71, 7,
838–857.

KIM, H., AND HILTON, A. 2013. 3d scene reconstruction from
multiple spherical stereo pairs. International Journal of Com-
puter Vision 104, 1, 94–116.

KIM, H., AND HILTON, A. 2013. Planar urban scene reconstruc-
tion from spherical images using facade alignment. In Proc.
IVMSP.

KIM, H., AND HILTON, A. 2014. Hybrid 3d feature description
and matching for multi-modal data registration. In Proc. ICIP,
3493–3497.

LAVOUÉ, G., CHEVALIER, L., AND DUPONT, F. 2013. Streaming
compressed 3d data on the web using javascript and webgl. In
Proceedings of the 18th International Conference on 3D Web
Technology, ACM, 19–27.

LIMPER, M., WAGNER, S., STEIN, C., JUNG, Y., AND STORK,
A. 2013. Fast delivery of 3d web content: a case study. In
Proceedings of the 18th International Conference on 3D Web
Technology, ACM, 11–17.

PFEIFFER, S., AND PEARCE, C. 2010. The definitive guide to
HTML5 video. Springer.

SCHUTZ, M. Potree. http://potree.org. Accessed: 2015-03-16.


