
Assisted Animated Production Creation
and Programme Generation

Juan Abadia, Alun Evans, Eduard Gonzales, Sergi Gonzales, Daniel Soto, Santi Fort,
Marco Romeo, Josep Blat

Universitat Pompeu Fabra – Fundació Barcelona Media
Tanger 122 - 140

08018 Barcelona, Spain
+34 93 542 20 00

alun.evans@upf.edu josep.blat@upf.edu

ABSTRACT
The creation of animated productions is a labour intensive
process. Whether the end result is a large-budget motion picture,
or a small-scale internet production, there is invariably a large
amount of time spent in creating the timeline, arranging assets,
previewing and editing. This iterative process is necessary in
large-scale productions but can become repetitive and frustrating
when the end result is a small production that may have similar
elements to previous work. We present a workflow system and
framework that are able to both greatly facilitate animated
programme production and introduce an element of procedural
generation. We further present the Programme Editor, an
application designed to be a powerful front end for the
framework. The principal contribution of this work is the creation
of an XML-based scripting engine that can be used to create an
animated production. This permits several techniques, tools and
workflows to interchange information, allows rapid incorporation
of further tools, and furthermore facilitates the complete
automatisation of the production process.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Resuable software – reusable
libraries, resuse models.
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – animations.
H.5.2 [Information Interfaces and Presentation]: User
interfaces – Graphical User Interface, Prototyping.
I.3.8 [Computer Graphics]: Applications.
J.7 [Computer Applications]: Computers in other systems –
Publishing, real time.

General Terms
Performance, Design, Human Factors.

Keywords
Reusable content, multimedia automation.

1. INTRODUCTION
Since the idea of convergence arose in the early 1990s, the media
industry has looked at cross-platform exploitation methods as a
way of producing more exciting content, more cost-effectively.
Yet while technology has helped to produce better quality sounds
and images, the costs continue to rise. Digital media production
remains very labour intensive, making it a very high-risk, high-
cost industry. One of the reasons is that productions are crafted,
almost without exception, at very low levels, in order to better
satisfy artistic needs. Indeed, in many applications, the existence
of more sophisticated digital tools has actually pushed up costs, as
more time is spent on complex off-line processes in the quest for
quality.

This leads to the concept of “re-usable” media, content that can
repurposed and used again for a different production. A classic
example of this has existed for years, with films and television
productions being dubbed into different languages, but what about
situations where the actual content of the production should
change? This is the situation that is addressed in the paper, with
the presentation of a framework for assisted creation of animated
productions and the automatic generation of programmes that vary
in visual and audio content.

The work presented can be split broadly in two aspects: the first is
introduction of the multimedia production scripting framework
which allows fine control of the creation of an animated
production or clip. The principal contribution of this work is
enabling aspects of animated production to be automated and re-
used according to external data. The framework also allows
multiple reuse of assets and semi-automatic programme creation,
and the complete separation of content from rendering.

The second aspect deals with the creation of an advanced editing
application, the ‘Programme Editor’ for rapid prototyping and
programme setup, and designed specifically for use with the
framework. The Programme Editor is capable of rapidly adjusting
different aspects/sections of a programme (for example, camera
type, actor locations, audio, and provide on-the-fly previewing of
the results. While essentially acting as a front end for the
programme scripting and generation aspects of the framework, the
Programme Editor is nevertheless a powerful application in its
own right, using a custom 3D graphics engine to display results in
real time (see Figure 1).

Figure 1: The Programme Editor and real-time preview
window

The paper is structured in the following order. Following a
discussion of related work we present in detail the framework for
assisted programme generation. We then present the Programme
Editor application, before providing several example of the use of
our work in both the commercial and academic fields. Finally we
conclude that the presented work is a novel and powerful
methodology for assisted animated production creation and
programme generation. The professional use that the framework
has already seen suggests that it provides real benefit to
production workflow, and provides a strong platform for the
integration of novel multimedia technology

2. RELATED WORK
Perhaps the most similar work to our framework is the
Synchronized Multimedia Integration Language (SMIL) [1].
SMIL is a W3C recommended markup language for describing
multimedia presentations. It is written directly in XML, and
defines markup for layout, animation, timing, visual transitions
and embedded media such as text, audio, images and video. SMIL
is the basis for the more famous Multimedia Messaging Service
(MMS), which is now ubiquitous within mobile telephony, and
was one of the underlying technologies for the now defunct HD-
DVD format. SMIL, and the possibilities of its use, were a strong
inspiration for the work in this paper, which can be thought of
extending SMIL to provide more complete cover for animated
production.

In terms of video editing applications, there are several companies
that provide similar instant editing capabilities. Redboard [2] is
storyboarding and prototyping technology, designed to enhance
existing workflows by integrating the traditional skills of the
storyboard artist into a CGI workflow. Their system consists of a
powerful computerised storyboarding tool coupled to a CGI
renderer, allowing artists to transfer their ideas directly to the
screen. Reboard estimate that the increased communication
between directors, producers and artists permitted by their system
leads to a reduction of up to 40% in storyboarding costs.
Redboard has already underpinned in-house productions, and it is
now launching for licensed use.

A slightly different approach is taken by French company
Xtranormal [3]. Instead of targeting high end users, they have
developed an online system that allows novice users to “make
movies”, using several preset combinations of backgrounds and
characters. The browser-based technology allows users to create
simple 3D animated clips with multiple characters, employing text

to speech software to provide audio files for the characters to
utter. Once configured, the clip is rendered and downloaded to the
browser for viewing and sharing on online video sites such as
YouTube.

Despite the technological accomplishments of commercial
software, there is a lack of automation and possibilities for
connection to external data. Indeed, the task of automatic
animated production generation is not that has seen that much
previous work in the academic field either. Assisted video editing,
of course, is a field that has seen much work, with Girgensohn et
al. [4] providing a recent example of advances in the field, backed
up by powerful commercial applications such as iMovie [5] and
Premiere [6]. For a more theoretical overview of usability of
visual programmeming environments, the reader is directed to
Green and Petre [7].

3. WORKFLOW OVERVIEW
3.1 Programme Scripting via XML
The XML scripting framework, while designed from scratch, was
inspired by the scripting philosophy behind SMIL [1], particularly
with regards to self-reference of contents with respect to a time-
line. The main difference is that the scripting XML explained in
this section makes use of the concept of different “content tracks”
that allow relative referencing (i.e. not direct referencing in time).
This allows the system to link any content without restriction. In
SMIL these concepts do not exist and are approximated with
production flows which lack the same flexibility.

The introduction of this relative referencing means that our
scripting framework is much more suitable for programme
scripting than SMIL. In this section, we describe in detail the
different elements that are used within the framework.

3.1.1 The Timeline
The workflow scheme we have defined for the generation of
programmes describes such programmes as a set of clips and
relations between clips. Each of these clips and relations are
defined using XML, and placed with reference to a common base
timeline. The timeline is the basis of the programme and used to
tie the programme together into a coherent whole.

3.1.2 Programme Components
Each clip represents a component of the programme, examples of
which are:

• camera location and direction

• virtual character location and orientation

• animation clip (for any component, including cameras)

• audio file

• background image

Each component can therefore be regarded as its own individual
entity; it can be placed at any location along the timeline and can
be moved forwards or backwards in time, simply by changing one
variable within the XML template. Furthermore, due to the fact
that each clip is merely an XML file, once generated it can be
shared and used among different programmes. Thus it is possible
to build up a variety of generic clips that can be re-used for
several purposes.

3.1.3 Time Dependencies and Relations
The relations between the components are also defined using
XML (with reference to the base timeline). The relations create a
series of time dependencies that indicate time constraints between
the components. This ensures that there are no clashes between
similar types of component, while allowing components that do
not affect each other exist at the same point along the timeline.
For example, one clip may specify that, between the time t=10s
and t=20s, the virtual camera should look at a certain point in the
scene. This relation for this component specifies that, during the
same period of time, it is perfectly possible for an audio
component to exist at the same point on the timeline; however,
another camera may not overlap.

3.1.4 Independence
The main advantage of the scripting schema that we have
developed is that it is completely independent of the rendering of
the programme. This allows several important benefits when
programme rendering is considered

• A programme description can be rendered to different
resolutions and qualities, yet still remain the same
programme. The programme description specifies what
is happening, not how.

• The time dependencies indicate time constraints
between actions.

• It is possible to change the representation of the
components and obtain the same programme with
different assets. For example, a programme description
might indicate that there is a component of type actor,
which at time t=10s raises a hand. The current
programme might also specifies the actor is called
‘Actor1’, and thus use meshes, textures and animation
from ‘Actor1’. Yet if we wish to swap to a different
actor, there is no need to re-script the programme. It is
possible to change the name of the actor to ‘Actor2’ and
still keep the fact that at time t=10s s/he will raise
her/his hand. The visual representation of the actor and
how each actor raises the hand is kept independent of
the programme design stage, and moved to the
rendering process.

3.1.5 Block Templates
As described above, the work of facilitating the process of
programme generation is based around the concept of defining a
set of components and the time dependencies between them.
Block templates assist further with this facilitation by grouping
components together and allowing for modification according to
some external input. For example, a block template for a
programme showing today’s weather might consist of an actor,
background and camera, linked on the timeline along with the
weatherman character’s associated gestures and audio files to
explain the weather.

The principal advantage of saving configurations of components
in this manner is that the individual components can be changed
according to external factors, thus creating a different programme
based on data that may come from database, or from user input. In
the example of the weatherman, typical components that could be
changed according to the current weather forecast would be the
background image of the scene and the audio file that the actor
would recite. A further example is that of a user interaction –

users could change the appearance of a character, or write a
sentence for the character to utter (via a text-to-speech engine).
Further possibilities include the ability to dynamically change
actor gestures or facial expressions depending on the input
(although this would require artificial intelligence beyond the
what the framework currently offers).

The framework also supports the use of changing variables within
block templates, for example for positioning objects within the
scene. These variables can be set to be constant, or vary along
certain paths, or even to be completely random. An example may
be a bird flying through a scene, and taking a different route each
time the scene is replayed.

In summary the grouping of components into block templates
allows the output of the framework to be dynamic. In this sense it
is a dynamic scripting framework, allowing the possibility for
programmes to be scripted while retaining (and encouraging) the
change in variables and components according to external factors.
The fact that the framework is based around a well-defined XML
schema allows such changes in scripting to be carried very easily,
as is described in Section 3.2, and demonstrated in several of the
use cases described in Section 5.

3.2 Programme Creation and Editing
There are four main methods of creating a programme or scene
using the framework. The most basic method is manual creation.
In this sense the framework can be thought of as an extremely
high level scripting language, capable of creating scenes,
animations and interactions along a time line. While manual
creation offers precise control over a scene, the disadvantage is of
course the time involved in writing code by hand.

A more powerful option is the use of software designed
specifically to replace the need for manual coding. The
requirements for this software are that it should be intuitive
enough to be used without the need for detailed training, yet be
powerful enough to be able to modify scenes to a high level of
detail. To this extent we have developed the Programme Editor, a
powerful yet straightforward visual timeline editor. The
Programme Editor is explained in detail in Section 4.

An extension to the Programme Editor is the possibility of
creating a web-portal for modification of a scene. For example,
once a block template is created using the Programme Editor, the
variables within it can be changed by users, via a web-portal, and
the results encoded as a video and downloaded by the user. An
example of this has been mentioned above, that of using a text-to-
speech engine to allow users to specify an utterance for a
character (see Section 5.2.2).

Finally, the framework allows easy integration with more
powerful visual editors such as 3D Studio Max (see Figure 2),
allowing the exporting and use of assets and textures in a
straightforward manner.

Figure 2: 3D Studio Max direct export to the framework

3.3 Visualisation
Once the programme description is generated, it is then passed to
the rendering software for visualisation. Visualisation takes place
either in real-time or as a video for various devices.

3.3.1 Real Time Visualisation
The framework comprises a powerful shader-based rendering
engine with sophisticated culling and lighting effects. The engine
supports real-time update of a scene, for example if a component
is added to a scene, or an existing component modified, the scene
description is seamlessly reloaded and the component appears
within the scene. This is particularly useful when prototyping how
a scene will appear, as it enables rapid addition/modification of
components without the need for the engine to reload each time.
For example, character appearance or gestures can be modified
quickly in order to quickly deduce which are more appropriate for
the scene; or random changes of variables can be quickly tested to
ensure that they are coherent. Furthermore, this visualisation
allows real-time interaction with the scene, in the form of users
being able to move objects and the camera (although this is not so
relevant to the generation of programmes).
The real-time renderer works via OpenGL. It is available both as a
direct executable and as a plug-in for internet browsers (such
Firefox and Internet Explorer), and runs on a variety of platforms
(included handheld platforms such as the iPhone).

3.3.2 Video Generation
Using the graphics engine, the framework can generate videos
based on the programme description. As mentioned above, this
area houses one of the most powerful capabilities of the
programme generation framework, as it is completely separate
from any decisions regarding content. This allows videos to be
generated for a variety of different platforms and delivery
methods. Videos can be encoded using different codecs, using
different compression algorithms, and at different resolutions.
This capability is of high importance given the variety of the use
cases presented in Section 5 (from television broadcast quality, to
downloadable flash video).

4. THE PROGRAMME EDITOR
This section intends to elaborate on the ‘front end’ of the
framework – the application that has been developed specifically
to drive assisted programme production using the framework. The
Programme Editor is a Windows application that provides an
intuitive drag-and-drop style interface to the placement of

programme components in the relation to both themselves and the
timeline.

4.1 Basic track/timeline structure
The structure of the Programme Editor is representative of the
structure required by the framework to create a programme
description. A programme consists of a series of base tracks along
the timeline, to which components can be added. Each track is
responsible for containing components of a particular type: the
background image, background objects and terrain, camera
position and animation, and any ambient audio. To the basic set of
programme tracks, actors can be added. Each actor has associated
with it its own set of tracks that are independent from the main
programmes tracks. The list of tracks is displayed on the left hand
side of the software, with the timeline running from left to right,
and displayed above. Figure 3 shows a screenshot of the structure
of a programme without any components added. The left pane
shows the list of tracks, while the right pane shows the timeline
and contents of the tracks.

4.2 Component addition and movement
Addition of components to a track is simply a case of right-
clicking anywhere on the track and using a drop down menu to
place components. The menu will only show assets and
components that are compatible with that track, regardless of the
current data directory (see Section 4.5). Once the component has
been selected, it will appear as a coloured rectangular indicator on
the track, overlaid with the name of its source component. The
location and lateral length of the indicator on the track, with
reference to the timeline, defines the start and end point of its
effect within the programme. For example, if the indicator for
component “Camera1” lies on the track between 00.10” and
00.15” on the timeline, between these times the camera used by
the programme will be as specified by component ‘Camera1’. By
holding the left mouse button on the indicator, it can be dragged
and dropped to any point along the timeline, although it cannot
overlap with another camera. By click-dragging either end of the
indicator left or right it is possible to change the duration of the
effect, and by right-clicking on the indicator it is possible to
rapidly align it to the boundary of the previous and/or following
clip (or the start of the scene). Furthermore it is possible to alter
the ‘fade in/out’ property of certain components so that their
effect does not appear/disappear immediately (this is more
relevant to animation and audio components).

Figure 3: Basic programme structure

Figure 4: Camera and audio components added to

programme description
Figure 4 shows an example of a camera component added to the
timeline, and an audio file added below it. During this region of
the programme, the output will be viewed using this particular
camera, and the background audio will be played from this
particular audio file. Furthermore a background scene, complete
with light sources, can be loaded into the left pane to provide
context for the programme.

4.3 Actors
Virtual characters located within a scene are a prominent feature
of the framework and Programme Editor. Within the left pane of
the editor, a sub-menu allows the addition of an actor to the scene.
The number of actors added is limited only by the rendering
capabilities of the machine that is running the software (which
itself is determined by the visual complexity, for example the
number of polygons, that each character has). Once a character is
added, the left pane displays the tracks for that character, as
shown in Figure 5. The basic tracks of an actor consist of:

• Default – specifies the default whole-body animation of
actor, usually an idle pose or animation.

• Facial animation – indicates the current facial
animation of the character

• Movement – specifies the current whole-body
movement animation of the character (i.e. animations
that will change the location of the character in the
scene).

• Gesture – defines any gesture animation (i.e. an
animation that will not alter the location of the
character) e.g. a waving hand.

• Sound – indicates the current speech file that is uttered
by the character. The software uses simple babble loop
animation to produce basic but effective lip-synch.

• Look-at – specifies where the character should be
looking. Can be the active camera, another object within
the scene, or another character.

• Body configuration – specifies different configuration of
changeable items on the character e.g. clothes.

 Figure 5: Addition of character "Bruce" to the scene

Figure 6 shows a typical screenshot of two characters with several
components assigned to their tracks. Both characters are looking
at the current active camera; one (“irina”) is currently walking
forward, the other (“panchito”) is making a greeting gesture while
uttering a text file. The drag and drop nature of the components
means that it is straightforward to adjust the location and/or
duration of any of these components, and once the programme
setup is saved in XML, other software could modify the code to
change the data source for each component (for example, to
change the source for Panchito’s utterance to a different audio
file).

There are several important parameters for the actors’ appearance
and behaviour that can be changed via context menus. An actor’s
position and orientation can be changed, and the loop/stretch
status of individual animations can be changed. For example, if a
character is to act a ‘wave’ animation for five seconds, yet the
actual duration of the animation is only three seconds, the user can
choose whether the animation is looped or stretched (slowed) to
accommodate the extra time. Importantly, the fade in/out tool
(mentioned above) can be used on all animations to ensure that
actors do not suddenly jerk unnaturally into movement.

Figure 6: Tracks with two characters and several components

added to the scene.

4.4 Output
The output of the Programme Editor follows the schema set out in
Section 3.3 above. The real-time preview is a powerful feature of
the editor as it loads the graphical engine in a sub-window to
preview the programme. In the main window, a vertical red bar
travels along the timeline to indicate exactly which section of the
programme is currently being previewed. Standard video control
buttons (Play, Pause, Stop, Forward, Reverse) allow control over
the output, while clicking on the timeline will skip instantly to that
moment in the programme. The viewer supports real-time
addition of components to the programme: without pausing the
action, a user can add a component to the scene and it will be
displayed instantly. Figure 1 shows an example of the real-time
preview window laid in front of the Programme Editor.

The other output option is the direct creation of a video clip,
accessed through the menu bar of the main window. This is in fact
a GUI for a separate command line programme that generates the
video. The GUI provides a variety of options as the resolution and
file types required for the video (as explained in Section 3.3) and
allows the user to specify a name and location for the output video
file. When creating videos with dynamic content, this final step is
frequently unnecessary, as the videos will be generated separately
with different content (as demonstrated in Section 5.1).

4.5 Formats and Technical Requirements
The output of the Programme Editor, and in fact the whole
framework, is obviously highly dependent on the quality of the
visual assets that are used. The file format supported by the
framework is FBX, chosen as it is allows assets (objects, cameras,
scenes, characters, animations) to be exported from several major
art packages (such as both Autodesk Maya and 3D Studio Max).
However FBX is still developing as a format and so we have
developed guidelines for the best methods to develop and export
assets. For use with the Programme Editor, assets must be placed
in a directory which is specified by the user as the ‘source’
directory; all assets within here will be accessible through the
context menus of the software.
The technical requirements for the Programme Editor vary
according to the complexity of the scenes being designed and
characters being used. However, minimum requirements for the
real-time visualisation are generally a Windows-based machine
with a GPU capable of running OpenGL Shader Model 2.

5. USE CASES
This section list several cases in which the automatic programme
generation framework has been used. None of the use cases
present a comprehensive evaluation of the technology, however
the mix of commercial and research based applications
demonstrates that the framework and applications have been used
across a broad spectrum of applications.

5.1 Virtual Presenters
5.1.1 Virtual Weatherman
The most prominent use case of our framework is shown with
“the world’s first virtual weatherman”, Sam [7]. Sam is a virtual
character capable of presenting the weather for hundreds of
locations around the world, and was created by Activa Multimedia

Digital1, in collaboration with our group and La Salle Engineering
at Universitat Ramon Llull2. Figure 7 and Figure 8 show
screenshots of Sam in action.

The development of Sam used the Programme Editor to create the
block template, and then took advantage of the ability to modify
the programme description separately according to external input
data – in this case, the weather forecast. Three times a day, the
latest weather 48-hour weather forecast for hundreds of locations
is accessed from an online weather database. This data is then
used to generate a video, using the visualisation technology
presented in this paper, for each individual forecast for every
location that is covered by the system. Multiple versions of these
videos are then made available to download on a variety of
platforms, including television and mobile platforms.

5.1.2 Virtual Stockmarket Report
A sample project in collaboration with a multinational media
company demonstrates further use of the technology in the
creation of programmes. The workflow for this use case was
similar to that used for the virtual weatherman. Characters were
designed and animated, while the Programme Editor was used to
locate them within a scene. Up to date stock market information
was used as text input for the character’s speech, and videos
generated periodically to present the information. A screenshot of
one of these videos is presented in Figure 9.

Figure 7: Sam the virtual weatherman

1 Activa Multimedia Digital. c/ Gasper Fàbregas 81, Barcelona

08950. http://www.activamultimedia.com/.
2 La Salle, Universitat Ramon Llull, Claravall 1-3, Barcelona

08022. http://www.salle.url.edu/.

Figure 8: Sam explaining today's weather

Figure 9: Virtual stock market presenter

5.1.3 Virtual Bar-tender
“Manolo” is a virtual bar-tender who proffers opinions on the
latest sports stories in a stereotypical manner. This use case differs
from the previous virtual characters in that the audio comes is
supplied by a recording of a real human voice (specifically from
recordings of a sport-radio talk-show host). In that sense the
technology is enabling a virtual view on non-visual events that
have occurred previously. Figure 10 shows a screenshot of
Manolo in action.

Figure 10: Manolo the virtual bar-tender

5.2 SALERO Project
SALERO (Semantic AudiovisuaL Entertainment Reusable
Objects) [8] is an FP6 European Union Integrated Project which
aims at making cross media-production for games, movies and
broadcast faster, better and cheaper by combining computer
graphics, language technology, semantic web technologies as well
as content based search and retrieval. The technology presented in
the paper has been the basis of a considerable amount of
integration within the project.

5.2.1 Programme Generator Server
The automatic programme generation technology has been
adapted for use with server technology, in a similar manner to
Xtranormal [3]. Typical applications of this include the ability for
users to specify different configurations within a scene (for
example, choice of character, clothes, speech etc.) and then
download a video of the generated scene (an Adobe Flash video in
our implementation). Figure 11 shows a basic example. The
limitations of what is possible with such a web-portal are due
largely to the design of the interface page. It would be perfectly
possible to create a comprehensive web-portal that mimicked the
majority of the functions of the Programme Editor. Possible use
case for this technology are in the ever growing field of user-
generated content, allowing companies to let users create custom
animations or videos according to their marketing plans.

5.2.2 Voice Generation and Transformation
Web based access to text-to-speech [9] and voice transformation
[10] systems allows the creation of web-portals that combine
these technologies into one application. Within the SALERO
project such collaborations are resulting in proof-of-concept web-
based mash-ups that show how such integration can rapidly create
results (see Figure 11).

Figure 11: Programme Generator Server. On the left the user
can specify some characteristics, including text to utter, on the

right the resulting video is displayed

5.2.3 Automatic Gesture Suggestion from Audio
Speech tagging systems are able to extract time-correlated speech
stress levels from a given input audio file. It is possible to use the
output of such algorithms to drive automatic gesture suggestion
for virtual characters within our framework. This cuts down on
the time required for the user to create a programme description,
adding a further layer of automation to generation process.

6. CONCLUSIONS AND FUTURE WORK
This paper has presented a framework for the assisted creation of
computer-generated audiovisual productions. The use cases
presented cover both commercial applications and more
academic-based integrations. The commercial use cases
demonstrate how the framework and applications are viable for
use in a commercial environment, complete with the economy
based time-pressures that are usual in such situations. The more
academic use cases show that the framework forms a solid base
upon which several interesting integrations and research
collaborations can take place.
Yet further evaluation is required to paint a more accurate picture
of the worth of the framework. While it is difficult to compare the
framework directly with related work, it certainly is possible to
perform user evaluation as to whether the framework and
associated applications do genuinely facilitate the creation of
audiovisual clips (although the existing commercial use seems to
suggest already a positive answer to this question). This further
evaluation will then be our immediate future task.

Further work lies in the correction and modification of several
technical issues. A major improvement will be the introduction of
animation blending within the same track. Animation blending is
already supported for animations that lie on separate tracks (e.g. a
walking animation can run concurrently, and is blended, with a
waving gesture), yet the framework does not support animations
overlapping on the same track. This means that any gesture, for
example, must finish before a new one starts. Further ideas for
improvements are the capability to use the visual preview screen
to move objects with the scene, in a drag-and-drop manner. Yet
going down this path may lead to several pitfalls, as 3D scene
modification is something that is already covered
comprehensively by several large modelling software
programmes.
In conclusion, the framework and application presented in this
paper presents a novel and powerful methodology for assisted
animated production creation and programme generation. The
heavy use that the framework has already seen suggests that it
provides real benefit to production workflow, and provides a
strong platform for the integration of multimedia technology.

7. ACKNOWLEDGEMENTS
The authors would like to thank the support and inspiration
provided by Activa Multimedia Digital, Barcelona. Aspects of the
work in this project were support by the European Commission
FP7 IP SALERO[8], and the Spanish collaborative project
i3Media.

8. REFERENCES
[1] Bulterman, D. and Rutledge, L. 2008. SMIL 3.0 - Interactive

Multimedia for the Web, Mobile Devices and Daisy Talking
Books. X.media.publishing. ISBN: 978-3-540-78546-0.

[2] Redboard. http://www.redboard.tv/.
[3] Xtranormal. http://www.xtranormal.com/.

[4] Girgensohn, A., Boreczky, J., Chio, P., Doherty, J., Foote, F.,
Golovchinsky, G., Uchihashi, S., Wilcox, L. 2008. A semi-
automatic approach to home-video editing. Proc. ACM User
interface software and technology (San Diego, USA, 2008).
81-89.

[5] Apple. “iMovie”. http://www.apple.com/imovie/.

[6] Adobe. “Premiere”.
http://www.adobe.com/products/premiere/

[7] Meteo Sam. http://www.meteosam.com/.

[8] SALERO (Semantic AudiovisuaL Entertainment Reusable
Objects). http://www.salero.info

[9] Alías, F., Iriondo, I., Formiga, L., Gonzalva, X., Monzo, C.
and Sevillano, X. 2005. High quality Spanish restricted-
domain TTS orientated to a weather forecase application.
Proc. 9th European Conference on Speech Communication
and Technology (Interspeech) (Lisbon, Portugal, 2005).
2573-2576.

[10] Mayor, O., Bonada, J. and Janer, J. 2009. Voice
Transformation from interactive installations to Video-
Games. Proc. 25th AES Conference: Audio for Games
(London, UK, 2009).

