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Abstract: In many applications of 3D graphics, shadows increase the believability and perceived quality of a scene. 
With the increase in power of workstation hardware, high-quality soft shadowing has become relatively 
common in many 3D desktop applications. In parallel, recent years have seen an increase in the availability 
and use of mobile and tablet based devices. The popularity of such devices is driving an increase in graphics 
intensive applications targeting the hardware, many of which will naturally require the use of shadowing 
algorithms. Yet the different architecture of graphics hardware of mobile devices restricts the 
implementation of many graphics algorithms, particularly those that require multiple references to a texture, 
such as common shadowing techniques. In this paper, we discuss effective shadowing on mobile devices. 
We show that even small-kernel Percentage Closer Filtering (PCF) soft shadows provide unacceptable 
framerates on mobile GPUs, but also how mip-chain dilation of the edges of a shadow map allows 
improvement performance to acceptable levels. Finally, we extend this technique by quantizing the strength 
of the detected edge to implement variable penumbra shadowing based on occluder distance.   

1 INTRODUCTION 

Human perception of 3D scenes is influenced 
greatly by cast shadows. Without shadows, it 
becomes difficult to assess both the size and the 
position of each object in a scene, as shadows 
provide a context which enables us to perceive the 
shape of an object, the spatial relationship it has with 
other objects in the scene, and the direction of the 
light source(s) (Mamassian et al. 1998). A shadow is 
defined by two regions: umbra (the area wholly in 
shadow), and penumbra (the area at the edge of the 
umbra only partially in shadow). A distinction is 
drawn between Hard Shadows (shadowed areas 
consisting wholly of umbra) and Soft Shadows 
(areas consisting of both umbra and penumbra). Soft 
shadows tend to provide more a more believable 
effect, but are more computationally expensive, as 
most algorithms include some sort of filtering to 
produce the penumbra effect. 

Graphical applications on mobile devices, such 
as cell phones and tablets, are becoming more 
powerful thanks to the increasing power provided by 
dedicated graphics hardware on the devices. Support 
for programmable pipelines (such as Open GL ES 
2.0) has now opened up the possibility for 
developers to implement custom lighting and 

shading algorithms, without depending on fixed-
pipeline effects. This has resulted in many 
commercial companies (particularly games 
development studios) to develop applications with 
advanced graphics effects, while still maintaining a 
sufficient framerate (Smedberg 2012) to enable real-
time user interaction. Nonetheless, it is clear that the 
restrictions of the hardware require a careful 
approach in order to maximise the potential 
performance. 

In this paper, we present a variable penumbra 
soft shadowing technique suitable for 
implementation on mobile devices. We show that, if 
not optimized, even small-kernel PCF soft shadows 
provide unacceptable framerates on mobile GPUs, 
and demonstrate how mip-chain dilation of the edges 
of the shadow map allows improvement of the 
performance to acceptable levels. We then extend 
this technique by quantizing the strength of the 
detected edge in order to implement variable 
penumbra shadowing based on occluder distance. 
This variable penumbra technique forms the 
principal contribution of the paper, supported by 
comprehensive results of the implementation of PCF 
shadow mapping on mobile hardware. 

Section 2 provides a brief overview of typical 
mobile graphics hardware and summarises the 



 

challenges faced. This is presented in advance of 
Section 3, which reviews several different 
shadowing techniques, as the latter frequently refers 
to mobile hardware constraints presented in Section 
2. Section 4 presents both the results using PCF, and 
those of our enhancements, and conclusions are 
drawn in Section 5. 

2.   MOBILE GPU ARCHITECTURE 

In this section, we present an analysis of typical 
mobile graphics hardware, as an understanding of its 
differences to workstation (or console) graphics 
hardware provides greater insight into the reasons 
behind the performance of different shadowing 
techniques. There exist, of course, several different 
mobile Graphics Processing Units (GPUs), whose 
typical architecture is very different to that of a 
desktop or console GPU. These mobile chipsets (as 
represented by the PowerVR SGX chip, or the ARM 
Mali series) commonly make use of a tile-based 
rendering (TBR), or a tile-based deferred rendering 
pipeline (TBDR). TBR divides the screen into 
square tiles (typically 16x16 or 32x32 pixels), and 
processes each tile individually. The GPU fits the 
pixels for one entire tile on the chip, processes the 
drawcalls for that individual tile, and then writes that 
tile to RAM once finished. The process is repeated 
for each tile until the screen is filled. TBDR delays 
fragment operations until occlusion tests have been 
processed avoiding expensive calculations for 
occluded fragments. TBR typically reduces bus 
bandwidth, thus saving power and allowing simpler 
systems – ideal for mobile contexts. 

Figure 1 shows an overview of the hardware 
pipeline in the PowerVR SGX chip (Smedberg 
2012). Vertex Data is taken from the Command 
Buffer and distributed, via the Vertex Frontend, 
among the GPU cores – each of which 
independently processes its set of vertices according 
to the Vertex Shader program. The results are then 
optimized via the Tiler and stored in the Parameter 
Buffer. The Pixel Front-end then fetches the output 
from the Vertex program and passes it as input for 
the Pixel program, which is again distributed among 
the GPU cores, one whole tile at a time (i.e. tiles are 
only processed in parallel on multicore GPUs). Non-
dependent texture reads are detected in the pre-
shader, before the main pixel shader calculations are 
performed, and the texture reads are performed in 
parallel. Once all the tiles have finished execution, 
any required Multisample Anti-aliasing (MSAA) is 

carried out, and the results written to framebuffer 
RAM. 

 

Figure 1: Overview of the graphics pipeline for the 
PowerVR SGX chip. 

After analysis of the structure of the pipeline, it 
is possible to draw several conclusions that should 
shape the design of any effective shadow-mapping 
technique: 

1. Changing render states (e.g. vertex input) 
causes the shader to be recompiled by the driver, so 
it is best to pre-compile a variety of shaders for each 
object in the scene 

2. Any calculation of texture coordinates in the 
Pixel Shader reduces performance. As many 
calculations as possible should be carried out in the 
vertex shader to be stored in the Parameter Buffer. 

3. Switching framebuffers is potentially 
expensive as each render target is a whole new 
scene. 

4. Dependent texture reads (where the location 
in the texture must be calculated prior to reading its 
value) should be minimised, especially given that 
non-dependent texture reads can be performed in 
parallel due to the action of the Pixel Frontend.  



 

3 AN OVERVIEW OF SUITABLE 
SOFT SHADOWING TECHNIQUES 

In this section we review a series of shadowing 
techniques with regards to their suitability for 
mobile hardware. A comprehensive literature review 
of real-time shadowing is beyond the scope of this 
paper, and the reader is directed to various reviews 
(Hasenfratz et al. 2003; Bavoil 2008; Scherzer et al. 
2011) and books (Eisemann et al. 2011; Woo & 
Poulin 2012). Nevertheless, it is convenient to 
summarise the basic technique and several 
approaches that are suitable for potential 
implementation on mobile hardware. 

3.1 Basic Hard Shadowing 

Shadow mapping was first proposed by Williams 
in 1978 (Williams 1978) (differing from shadow 
volumes proposed a year earlier (Crow 1977)), and 
the majority of research since that time has focused 
on improving the appearance and speed of the basic 
shadow mapping technique. Its underlying concept 
is to pre-measure the distance from the object to a 
light (distobj). When the scene is later rendered to 
the screen (from the camera’s perspective), the 
distance-to-light of each fragment is measured 
(distfrag) and the fragment’s 3D position is re-
projected according to the light’s perspective in 
order to recover distobj. If distfrag is greater that 
distobj, we know that the object is closer to the light 
than the current fragment, and that both positions lie 
on the same projection from the light. Thus, the 
current fragment is hidden from the light occluded 
by the object, and its colour can be modified to make 
it appear shadowed. 

To implement the basic shadow-mapping 
algorithm, the usual approach is to make a first 
render pass from the light’s point of view, storing 
the depth value of the resulting image as a texture, 
termed the shadow map. This is then passed as a 
parameter to the second render pass, this time from 
the camera’s point of view. The light’s projection 
matrices calculate each fragment’s position in the 
shadow map, and a texture lookup is done to 
calculate the distance to the light. The algorithm 
suffers from several problems (e.g. shadow acne, 
self-shadowing, shadow map resolution issues) 
which must be overcome by introducing external 
correction factors (Bavoil 2008; Sander et al. 2005),.  

Hard-shadowing is named so as it creates a 
binary classification – each pixel is either occluded 
(shadowed) or not. Thus, a characteristic result of 
the technique is a jagged, pixelated shadow 

boundary, with no smooth variation in shadow 
intensity. 

3.2 Soft Shadowing 

The penumbra, as mentioned above, is the 
partially shadowed area that is located at the edge of 
the umbra (or hard shadowed area). In 1987, 
(Reeves et al. 1987) proposed Percentage Closer 
Filtering (PCF). Where simple shadow mapping 
compares a single light-depth sample to the depth of 
the camera sample, PCF performs several such 
evaluations in a small window, or kernel. By 
averaging the contribution of the entire kernel to the 
shadow value of the central point, it is possible to 
draw pixels that appear as partially shadowed (i.e. in 
penumbra) and remove the binary appearance of the 
basic shadow map technique. PCF has two key 
parameters: 

i) the number of samples in the kernel 
(typically a square, and varying from 
2x2 up to, for example, 17x17) 

ii)  the ‘spread’, or distance in between 
each sample in the kernel. 

 
If the first parameter grows, the penumbra is 

wider, at the cost of hugely increasing the number of 
texture reads. The second parameter is commonly 
set to the width of a single pixel in the shadow-map 
texture; increasing it also widens the penumbra, but 
can lead to aliasing effects within the penumbra. To 
counteract these effects, the kernel can be 
randomized and effectively transformed into a 
sample disk (Engel 2004) which converts the 
aliasing effects into a Poisson distribution of noise, 
in a disk with the radius of the width of the kernel. 

Variance Shadow Mapping (Lauritzen 2007) is 
another soft shadowing technique with fixed 
penumbra size. It calculates the variance of the 
distribution of shaded pixels, and uses this to 
calculate the probability of whether a pixel is in 
shadow or not. Its advantage is that the results can 
be easily filtered in hardware (for example using 
mip-maps) thus relieving the pixel shader of the 
requirement to execute any filtering calculations (as 
with PCF). Its primary disadvantage is that it is quite 
sensitive to the setting of parameters, to the bit-depth 
of textures used in its calculation, and to light-
bleeding artefacts (Bavoil 2008). Other fixed 
penumbra solutions include Convolution Shadow 
Maps (Annen et al. 2007) and Exponential Shadow 
Maps (Annen et al. 2008). 

The major disadvantages of fixed-penumbra 
methods for shadow filtering are that they do not 
attempt to model the real appearance of the 
penumbra. The width of the penumbra is not 



 

constant, and can depend on several factors, such as 
the width of the light, and the distance between the 
occluding surface and receiving surface. Fernando 
(Fernando 2005) proposed Percentage Closer Soft-
Shadows (PCSS), which computes the filter 
sampling range (in other words, the width of the 
penumbra) adaptively, based on the relative 
distances between the light source, occluder and 
receiving surface. The filter radius is first 
determined by point-sampling the depth map for 
occluding surfaces, and then standard PCF can be 
used with the deduced filter radius. In practice, a 
blocker search radius of 5x5 pixels is sufficient for 
shadowing without artefacts (Bavoil 2008). 

Another method of varying the penumbra size, 
first introduced by Wyman and Hanson (Wyman & 
Hansen 2003), is to use an intermediate step to 
create a separate image representing a ‘penumbra 
map’. The underlying concept is to pre-process the 
shadow map in order to create a separate input 
texture for the final renderer, which describes the 
extent of the penumbra at each point. The technique 
was improved by (Chan & Durand 2003) by 
extruding degenerate quads from silhouette edges 
(‘Smoothies’); and also by (Arvo et al. 2004), using 
image space flood-fill techniques and multiple 
rendering passes to obtain a penumbra map. (Lili et 
al. 2010) propose another solution for the creation of 
a penumbra-map by pre-processing the shadow map 
using a simple Laplacian edge detector, and 
interpolating the edge over the variable width of the 
penumbra. For each pixel detected as edge, the 
width of the penumbra is calculated using a very 
similar equation to the PCSS technique. The 
penumbra map is then calculated by interpolation of 
the edge over the calculated width of the Penumbra 
at that point. Drawing the shadow in the final render 
is calculated by multiplying the value of the 
penumbra map with the outcome of the standard 
hard-shading technique. 

4 CASE STUDY 

4.1 Test environment 

For this study, a simple 3D scene renderer was 
developed for Apple iOS in native Objective-C, C++ 
and Open GL ES 2.0. The purpose of the test 
environment was to provide consistent conditions 
for the testing of shadowing algorithms on the 
PowerVR SGX GPU. As discussed in section 2 
above, the rendering pipeline of this chip is typical 
of that found in other mobile chips, including those 
on other tablets and mobile devices running other 

operating systems such as Android. The scene 
contained two 3D mesh objects: a >50,000 vertex 
mannequin model acting as the occluder, and a 
simple floor plane to receive shadows. Self 
shadowing of the occluder was disabled in 
accordance with current industry practice (Smedberg 
2012). The shadow-map resolution was set to 
1024x1024 pixels, except when tests were carried 
out to determine the effect of changing this 
resolution (see below). A perspective projection was 
used for the creation of the shadow-map – despite 
the fact that an orthographic projection is easier to 
manipulate and could potentially provide better 
results (Smedberg 2012), as it provides less realistic 
results with low, parallel light, where benefits of a 
variable penumbra algorithm are best seen. 

4.2 Initial Tests 

Our initial baseline tests focused on 
implementing soft-shadowing using PCF. The 
results were disappointing. Adding a simple 4x4 
PCF kernel to the pixel shader caused the framerate 
to drop to 7fps. One straightforward potential 
optimisation is to calculate the texture coordinates in 
the vertex shader, and pass them as varying data to 
the pixel shader. This would enable the GPU’s Pixel 
Frontend to queue texture look-ups in advance, and 
improve performance. However the weakness of 
pixel processing in such mobile architecture in 
general means that many calculations (for example, 
for lighting) are also preferably carried out in the 
vertex shader, and must be passed onwards to the 
pixel shader. Given that there is a hardware limit on 
the chip of 32 float values that can be passed as 
varying variables, a small 4x4 kernel uses half of the 
available values, and is not practical for most uses. 
Thus, this optimisation was discarded at an early 
stage. 

An implementation of the Variance Shadow 
Mapping (VSM) (Lauritzen 2007) algorithm 
produced higher framerates, but a lack of available 
bit-depth in the texture  formats for OpenGL 
textures in OpenGL ES 2.0 for iOS meant that VSM 
produced too many rendering artefacts to be useful, 
particularly in areas where the occluder was close to 
the shading surface. In summary, our initial tests 
showed that that neither unoptimized PCF nor VSM 
are suitable for producing suitable shadowing for the 
current generation of mobile graphics hardware. 



 

4.3 Limiting soft shadowing with 
edge detection 

Based on the results of the initial tests, we 
implemented a simple 5-sample edge detection 
convolution filter (1) on the shadow map. Such a 
simple filter was chosen in order to minimize the 
required texture lookup on the GPU, (although the 
effect of using more complex filters is discussed 
below). As recommended in Section 2, these texture 
coordinates are calculated in the Vertex Shader. 

 

𝐷!" =
0 −1 0
−1 4 −1
0 −1 0

      (1) 

 
A mip-chain dilation, similar to as proposed by 

(Sander et al. 2005), was used to dilate the 
discovered edge. The dilation samples lower-level 
mip-map images at the native resolution, and 
implements a clamp function where any input value 
> 0.0 is clamped to 1.0. Bilinear filtering is used in 
mip-chain creation in order to reduce aliasing issues.  
This provides us with a ‘shadow mask’ texture as 
shown in the Figure 2. 

Figure 2: Results of edge detection filter on shadow map 
(left) and resulting mip-chain dilation (right). 

 
By sampling this dilated edge image as mask 

texture in our main shader, we can selectively apply 
soft shadowing in the main scene render. In pixels 
where sampled value of shadow mask is 0.0, we 
apply standard hard shadowing – thus pixels in the 
umbra, and outside the entire shadow, and tested 
using simple hard shadowing. Where the sampled 
value of the shadow mask is 0.0, for this pixel we 
apply a PCF kernel, using poisson-distributed 
sampling to reduce banding (Engel 2004).  

Using this method, we see the framerate jump 
from 7fps to 25fps, using a 4x4 PCF kernel. This, 

then, demonstrates that it is possible to execute soft 
shadowing on mobile chipsets with reasonable 
performance (see Figure 3). 

4.4 Variable soft shadowing 

As explained by (Fernando 2005) and elsewhere, 
the greater the distance between the occluder and 
shadowed surface, the wider the penumbra should 
be. With this in mind, our goal was to create an 
efficient implementation variable penumbra soft 
shadowing, usable on mobile devices. With concerns 
about the possible performance hit of the blocker-
search phase of PCSS, and following the existing 
results using edge-detection, we modified our clamp 
function of the mip-chain dilation step to quantize 
the detected edge into discrete bands. The edge 
detection convolution filter of (1) by its nature 
produces a stronger edge (higher pixel value) in 
areas where the occluder is further from the 
background. In areas where the occluder is near the 
background, the edge will be very weak; thus this 
intensity information can be used to simulate the 
widening the of penumbra where the occluder-
background distance is larger. Note that this 
approach is similar in certain aspects to the Min-
Max mip-map shadow-map approach of (Dmitriev 
& Uralsky 2007). 

 

 
Figure 3: 4x4 PCF  

We decided to quantize the edge intensity 
because the PCF kernel is, by its nature, discrete: a 
3x3 kernel can only be enlarged in discrete units (to 
4x4, 5x5 etc.). However, the mip-chain dilation 
algorithm, again according to its nature, loses the 
strength of the detected edge, as the required 
thresholding step permanently clamps intensity to 



 

1.0. Our solution is to take advantage of the different 
colour channels of GL_RGBA texture. For edge 
intensity d in the initial edge detection texture: 

 
0.2 < d ≤ 0.5 : blue channel 

0.5 < d ≤ 0.8 : green channel 
0.8 < d : red channel 

 
The thresholding step of the mip-chain dilation 

algorithm now preserves these three discrete levels 
(in effect, four levels, as the absence of an edge 
provides data also) and therefore information about 
edge intensity, and thus the distance between 
occluder and shading surface can be preserved. By 
testing for these discrete levels in the final render, 
we can now selectively apply different PCF kernel 
sizes to achieve the desired penumbra width. Where 
we detect a larger distance between occluder and 
surface, we use a larger PCF kernel to obtain a wider 
penumbra. Where the occluder distance is lower, we 
apply a smaller PCF kernel (or even use hard 
shadowing) to obtain a narrow penumbra. 

With this approach, our test scene demonstrated 
variable penumbra shadow mapping, with penumbra 
width increasing with occluder distance, running at 
20fps.  

4.4.1 Visual Results 

 
Figure 4: Variable Penumbra soft-shadows 

Figure 4 shows an image of the test scene with 
the variable penumbra soft shadows. Figure 5 shows 
a zoom comparison of the differences between fixed 
(PCF) and variable penumbra. In regions where the 
occluder is far, the variable penumbra is softer than 
the fixed penumbra. In regions where the occluder is 
near, the variable penumbra shadow is harder than 
the fixed penumbra. For this figure, the kernel 

widths within the three quantized levels were set to 
3x3, 5x5 and 7x7 samples, whereas the fixed 
penumbra was set to a 4x4 kernel. The variable 
images (right column) show a wider penumbra in the 
head region (far occluder) yet greater detail 
maintained in the hand (near occluder). 

 

 

Figure 5: Zoom comparison image of two regions of 
shadow. Top row: far occluder. Bottom row: near 
occluder. Left column: Fixed (4x4 PCF) penumbra. Right 
column: variable penumbra.  

4.4.2 Artefacts and corrective measures 

Although in many cases the variable penumbra 
algorithm proposed produces good results, there are 
occasionally shadowing artefacts where an incorrect 
filter width is applied in a small region. These errors 
can be linked directly to the quality of the detected 
edge of the shadow map. Irregularities in the 
detected edge are caused either by incorrect edges 
being detected within the model geometry, or noise 
due to the use of such a simple filter at low image 
resolution. Any irregularities affect the quantization 
which leads the areas affected being shadowed using 
a different filter width to their surrounding area. 

Increasing the resolution of the shadow-map, 
and/or using a more accurate edge-detection filter 
can correct these artefacts, as both approaches 
improve the quality and remove noise from the 
detected edge. Nonetheless, this correction comes at 
the cost of rendering speed and framerate, as shown 
in the results below. The artefacts due to internal 
object edges are more serious and more difficult to 



 

overcome. If an internal object boundary (for 
example from an arm overlapping the body) is near 
the external boundary of the edge (when seen from 
the light perspective) there is a risk that the latter 
(which is what our proposed variable penumbra 
technique depends on) will be masked by the 
internal edge formed by object self-occlusion. This, 
in turn, will lead to incorrect classification of 
occluder distance in that region of the image. 

A final unavoidable issue, common to every 
technique employing variable PCF kernels, is the 
potential for a visible ‘jump’ on the shadow 
boundary when changing between kernel widths. 
This can be minimised by ensuring the difference 
between kernel widths is kept low. 

4.5 Comparison of results   

Table 1: Comparison of framerates obtained using the test 
scene and hardware. The iPad is hardware limited to 60fps 

Shadow Technique Framerate 
Hard Shadowing 52fps 

4x4 Standard PCF  7fps 
4x4 PCF 

w/ Shadow Mask 25fps 

7x7 PCF 
w/ Shadow Mask 11fps 

Quantized Shadow Mask – 
2x2, 3x3, 5x5 20fps 

Quantized Shadow Mask  
– 3x3, 5x5, 7x7 14fps 

 
Table 1 summarises the framerates obtained 

during the case study presented in this paper. It is 
important to note that, as shadow mapping is a pixel-
based method, the larger the shadow on the screen, 
the lower the performance – changing the light and 
camera position can produce very different results. 
The scene used for all of these results was kept 
static, thus it is the difference between the obtained 
framerates that allows us to compare each method.  

The table shows clear improvement in framerate 
when using a Shadow Mask to restrict PCF 
application, and only small degradation when using 
a quantized Shadow Mask to apply variable PCF 
filter kernels within the scene. As expected, the 
performance degrades when the kernel sizes of each 
level are increased. Table 2 briefly summarises the 
differences in performance when changing the 
shadow map resolution. The performance degrades 
notably with increasing resolution, yet the improved 
performance of using a 512x512 pixel shadow-map 
is offset by poor visual results, due to the appearance 
of artefacts, as mentioned above. Using a more 
accurate edge detector, for example a kernel filter 
such as in equation (2), improves the results 

marginally, but does not satisfactorily remove 
artefacts from the 512x512 shadow-map image. 
Table 3 shows the performance hit when using the 
filter from (2), which is due to 9 texture look-ups 
being performed per pixel instead of the required 
five in (1). 

 

𝐷!" =
−1 −1 −1
−1 8 −1
−1 −1 −1

      (2) 

Table 2: Effect of changing shadow-map resolution on a 
Quantized Shadow Mask (2x2, 3x3, 5x5) 

Resolution (pixels) Framerate 
512x512 24fps 

1024x1024 20fps 
2048x2048 12fps 

Table 3: Effect of using a more accurate convolution filter 
- Quantized Shadow Mask (2x2, 3x3, 5x5); 1024x1024. 

Resolution (pixels) Framerate 
Filter from (1)  20fps 
Filter from (2) 14fps 

5. SUMMARY AND CONCLUSIONS 

The principal results of this paper can be 
summarised in three points, which together comprise 
the contribution of the paper to the graphics 
community: 
! The current generation of mobile hardware is 

not capable of painting un-optimized PCF 
soft-shadows with acceptable performance; 

! Edge-detection and mip-chain dilation can 
increase the performance of PCF on mobile 
hardware to acceptable levels; 

! The technique used to perform this 
optimisation can be extended to create 
variable Penumbra shadowing, with only 
small performance loss; 

 
Our future work has three main foci: the first is 

to address the issue of artefacts due to occluding 
edges. One possible approach to solve this would be 
to use a Z-peeling approach to store the depths of all 
light occluders for a given pixel; and use this 
information to draw the edge. The second focus is to 
apply more rigorous testing of our techniques on 
different hardware; while we can naturally 
extrapolate performance for GPUs from the same 
family (such as in other iPad or iPhone models), 
current performance on other chips with different 
operating systems (such as Android) is not known. 



 

Our final focus is to engage more critical 
comparison with established shadow-mapping 
techniques, especially variable penumbra methods 
such as PCSS, and also make more extensive tests 
with more demanding scenes, involving large scale 
geometry and multiple meshes. 
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