
Web-based data visualization of an MMO
virtual regatta using a virtual globe

Gerard Llorach, Javi Agenjo, Alun Evans, Josep Blat

Interactive Technologies Group, Universitat Pompeu Fabra
Barcelona, Spain

{gerard.llorach, javi.agenjo, alun.evans, josep.blat}@upf.edu

Abstract

In this paper we present the methods and techniques used to
visualize the trajectory of the participants of a massive virtual
regatta using a virtual globe in the web browser. The emergence
of new web technologies, such as HTML5 and WebGL, have
opened new avenues for visualizing and sharing 3D data.
However, web-based visualization of big data is still challenging,
as the power of the web browser for 3D visualization has still not
reached the level of desktop applications. In this work, we use
WebGL to visualize the path of the 17000 virtual boats that
participated in the MMO game of the Barcelona World Race 2015,
and present optimization strategies for the rendering of this Big
Data (which is otherwise impossible to render in a web context on
standard consumer hardware). We also combine this optimization
with a render-to-texture approach to visualize the density of the
boat routes, rendering and visualizing the data progressively, and
using web workers for processing and managing the data.

CR Categories: I.3.7 [Computer Graphics]: Applications; I.3.3
[Computer Graphics]: Picture/Image Generation — Bitmap and
framebuffer operations.

Keywords: Web 3D, WebGL, rendering, big data, optimization,
visualization

1 Introduction

The Barcelona World Race is one of the world’s leading sailing
regattas. Crews of two people leave Barcelona and compete to sail
around the world in the shortest amount of time, not stopping on
land until they return to Barcelona, some three months later.
Running in parallel to the regatta a web-based Massive
Multiplayer Online (MMO) game allows members of the public to
sail a ‘virtual boat’ around the world, competing in real-time with
the real boats of the regatta, and navigating their boat under the
same weather conditions (updated in the game every 6 hours from
live weather data).

The number of players in the game provides a fascinating source
of big data for visualization in a 3D application, as the trajectory
taken by each virtual boat, along with the current sail choice and
current weather conditions, are stored for the duration of the entire
race. Using the web for visualization of big data is now very
attractive due to its ease of sharing visualizations and interactivity.

Although expensive and advanced renderings have still to rely on
desktop applications or remote machines, the evolution of web
technologies has created a great potential for web-based
visualizations on the client side.

In the majority of situations, when a high quality render is
required, server-side rendering is chosen and the result is
transmitted as an image to the client. The main advantages of
rendering on the server side are to overcome the rendering
limitations on the client, and avoid transmission and parsing hold-
ups. It has a negative effect on the interactivity, as user actions
need to be sent to the server and the interaction can be affected by
latency. Rendering the data on the client side offers a better
experience for interaction, bearing in mind that the application
runs on the client machine, which therefore needs to be powerful
enough to run it. Also, the data needs to be transmitted and
processed in an efficient and intelligent way, for the user to be
able to start the interaction with minimal delay. Rendering on the
client side is preferred when it is based on data and the user
interacts with the visualization. Interactivity is much improved in
these cases.

The main contribution of our work is a strategy for processing and
visualization of complicated data for efficient rendering in a web-
browser. We visualize the itinerary of 17000 boats sailing over the
world’s oceans, featuring over 20 million points in total. Our main
problem comes from the fact that consumer level hardware is not
able to render so many lines at a high frame rate, within a web
context. We solve the problem by cutting the paths dynamically
while simulating the evolution of the race. However, this solution
doesn’t permit the visualization of the all the complete paths, so
we further draw all full paths into a density map progressively.
Our work shows some of the possibilities of the browser for
visualizing large data sets of trajectories on the client.

2 Previous work

The recommended approach for visualizing data recorded over the
earth is to use a 2D map or 3D representation of the earth. We
choose to use a 3D representation of the globe as most 2D earth
maps have distortions; the most common 2D map projection is the
equirectangular projection which distorts the poles mostly [Snyder
1987].

3D representations of the globe, also known as virtual globes,
have been widely used to visualize cartographic information,
weather forecasts and any other kind of information (demography,
natality, GDP and many others); Blower et al. [2007] describe the
use of virtual globes in three desktop applications (Google Earth,
Nasa world Wind and ArcGIS Explorer). Some of these
applications are very powerful, nevertheless users need to
download and install each individual application, (unlike a web
approach, which requires a single installation of a browser)..

Figure 1: Render to a texture results. Texture resolutions and frame rates, from left to

right: 1024 res, ~50 fps; 2048 res, ~43fps; 4096 res, ~35 fps.

There are different approaches for implementing virtual globes on
the web. For example, the applications by Gede [2009], Beccario
[2014] and Prentice [2015] use all different techniques. The first
uses VRML, a descriptive file format for a 3D scene, the second
SVG, a XML-based file format for two dimensional vector
graphics, and the last one WebGL (see Evans et al. [2014] for
further information on all these methodologies). We use a custom
WebGL engine because its flexibility, low-level access to the
GPU and performance [Kee et al. 2012].

3 General Approach

In our work the data is presented and drawn on top of a virtual
globe. Virtual globes allow the user to navigate, interact and focus
in any area of the globe, and are useful for visualizing information
on the earth from different perspectives and scales, allowing the
display of large datasets on the globe [Beccario 2014, Blower
2007].

Our goal is to visualize and understand trajectories of the boats of
the MMO game. Rendering so many lines can be difficult for
consumer level hardware in terms of GPU power. We propose
two different approaches to visualize the data: 1) showing the
evolution of the race over time whilst only rendering a part of the
trajectory of each boat and 2) rendering the full trajectories
progressively into a framebuffer, resulting in a density map of the
followed trajectories (figures 2 and 1 respectively). By combining
approaches (1) and (2) at the same time, we achieve an effect very
similar to that of rendering all the lines at once, but at a fraction of
the computation time.

Having a 30 - 60 Hz frame rate is very important for the
visualization display, especially for interactivity. In our work
there are some calculations done in the CPU that could make the
frame rate drop. To avoid this problem, we use a web worker
thread. Threads in javascript don’t have access to the main thread
memory and the HTML document. They run asynchronously and
communicate via messages with the main thread. Further details
are in section Threading and Efficiency.

For storage purposes, during the race samples are only added to
the dataset when the boat changes its direction or significantly
changes its velocity. This creates a data set unevenly sampled in
the timeline. There are approximately 1200 samples per boat on
average, but each boat will have a very different number of
samples according to its activity due to the sampling process.
Each sample contains latitude, longitude and a timestamp. The file

is stored in a binary file which can be sent to the visualization
client and processed. Boat paths are stored in a binary file format
where longitude and latitude are normalized to two UNSIGNED
SHORT values (so we have a 2^16 different values for longitude
and latitude). The position of each boat is thus stored using 4
bytes. We store an initial timestamp using 8 bytes and the
remaining timestamps are stored using delta-times of 4 bytes. The
total amount per boat per sample is 8 bytes during loading. To
improve loading performance, this file should be subdivided and
preprocessed in a previous offline stage, but this is beyond the
scope of this paper.

4 Implementation details

We used two different methods to visualize the data with a custom
WebGL engine. The first method consists of rendering a short
path for each boat. There are too many samples to be rendered all
at the same time, thus only the last samples where each boat has
gone through are chosen. A mesh containing all these selected
samples is recalculated as the visualization progresses. We permit
dynamic changing of the number of samples for the paths, so the
application can adapt to different hardware, in terms of CPU and
GPU power. The second method relies on rendering the path on a
texture i.e. using a framebuffer object. The result is a density map
of the areas where users passed more often. The creation of this
map is done in real-time while the simulation progresses. When
using this method there is an important compromise between
resolution and performance. High texture resolutions, which
imply low performance, are required for good visualizations at a
detailed scale, as a virtual globe is used for visualization and the
user can zoom in specific areas. Figure 1 shows the differences
when using different resolutions. The path drawn into the texture
is finer and more information is appreciated, at the cost of
decreasing the frame rate. The creation of this map could also be
done in an offline render to achieve high resolutions and detail.

These two methods are described in detail in the following
sections.

4.1 Path visualization

As mentioned before, the evolution of the race is visualized over
time. Each boat has a short path or tail behind showing its last
movements. This tail is represented as a line, which is formed by
a specific number of samples. Each sample contains latitude,
longitude and a timestamp. These samples are stored as vertices in
a unique mesh that contains all the tails. As the samples are

unevenly sampled, we need to interpolate to find the position of a
boat according to the progress (t) (figure 3). We tested two
different approaches:
• Interpolation through shader: in the GPU, the vertex shader
interpolates timestamps between vertices. In the fragment shader,
the pixel is discarded if the pixel timestamp is bigger than t. The
progress (t) is sent as a uniform to the shader.
• Interpolation through CPU: to find the interpolated sample at a
precise time t, we do a binary search to find the closest sample
over t and the closest under t. The new interpolated sample uses
the timestamp of these last two to calculate the interpolated
latitude and longitude.

When using the interpolation through shader, we accomplish a
much smoother visualization between samples. This is due the
fact that the progress (t) is sent to the shader at every update and
the recalculation of the mesh can take more than one update frame.
Interpolating through the GPU takes less time than the
recalculation of the mesh in the CPU, which implies that it is the
preferred option; in practice, however, it suffers from some
performance issues. In some occasions inside the data set, vertices
can be sampled very close to each other. If, while interpolating the
mesh in the GPU, it does not yet contain the new vertex with a
bigger timestamp (tstmp > t), there can be a noticeable (and
undesirable) intensity change in the path drawn. To solve this,
extra vertices can be added in front of the path to smooth the
interpolation, but adding front vertices makes the mesh bigger and
decreases performance. For example, adding three extra front
vertices for each boat can result up to 51000 additional vertices.

We use another strategy to be able to visualize longer paths with
the same number of vertices. We permit the application to skip a
selectable number of vertices between samples when recalculating
the mesh. The visualization is not completely reliable but the
application is able to show longer approximate trajectories while
maintaining the frame rate. Figure 2 shows the potential of this
strategy: screenshots 1 and 2 are very similar although the first
one is using 15 vertices per boat and the second only 4. The size
of the mesh is divided by 11.

Figure 2. Screen captures of the visualization of the paths at
the same progress. Screenshot 1: 15 vertices per boat, no

vertex skipping. Screenshot 2: 4 vertices per boat, 4 vertices
skipped. Screenshot 3: 15 vertices per boat, 1 vertex skipped.

Screenshot 4: 15 vertices per boat, 4 vertices skipped.

Figure 3: Illustrative picture of the visualization of the path
tails. The samples from the data set are represented by green
dots (n+1, n, n-1…). The interpolated sample (red dot) is the

precise position at the precise progress (t) of the simulation. The
variables tstmp represent the timestamp of the near sample.

4.2 Density map

Rendering to texture is commonly used in computer graphics for
reflections and other effects. Instead of rendering to the screen,
the rendering is done on a texture which can be used later on in
future frames. As our data is too big to be rendered at once, we
render it progressively in a texture. The result is a density map,
showing the routes and areas more passed by. This density map
can be created at runtime, showing the progress to the client, or it
can be created previously in the server and then sent to the client.
Sadly the specification of WebGL 1.0 doesn’t allow the use of
multisampling inside framebuffer objects (there is a draft proposal
for WebGL 2.0) which would raster better quality antialiased lines.
However, this could be achieved using post-processing techniques
on the texture, once all the samples had been painted, with
algorithms like FXAA.

4.3 Threading and efficiency

The CPU recalculation of points is usually slow, causing the
frame rate to drop and to decrease the interactivity response. In
our work, the process of recalculating the mesh is done in a web
worker or thread. This thread is in charge of loading and parsing
the data at the start of the application, as well as recalculating the
mesh. The communication between the main thread and the web
worker is done through petition and response. Once the last
recalculated vertices are received, the main thread asks for a new
recalculation. A buffer containing the new vertices is sent to the
main thread, which updates the vertices of the mesh. We used
typed arrays to improve performance during this process. We
tested using transferable objects, a new implementation to send
data faster between the thread and the main thread. We discarded
using them because transferable objects meant creating new array
buffers at every mesh update, which decreased significantly the
performance of the visualization.

5 Results

Several methods were applied to accomplish the visualization of
the trajectory of a large number of boats in a virtual regatta
around the globe. Rendering to a texture permitted an analysis of
the areas and paths most followed by the players. The density map
can be useful to understand where the players thought the winds
would be better to win the race and, which routes they preferred.

The path visualization shows precisely the trajectory of each
individual boat over time, which cannot be shown with the density
map alone.

For the path visualization we choose to use the interpolation
through the CPU. This is due the fact that the interpolation
through shader can cause some undesired intensity changes in the
overall path visualization, as mentioned above. Nevertheless, in
our application we allowed the users to choose a particular
number of boats and load all their samples in a mesh, so they can
visualize precisely the whole trajectory of the selected boats. For
this visualization we created a mesh containing all the points of
the selected boats from the beginning to the end of the race. As
this mesh doesn’t need to be updated the interpolation through
shader is the best choice.

When rendering on the client, we have to bear in mind that every
client will have a different machine. Allowing users to choose the
number of vertices per path and the number of vertices to be
skipped makes the application adaptable to the client’s machine.
The visualization might be slightly different, but it can still
provide very similar results. Table 1 provides evidence that
visualizing all the information without using our techniques is not
possible. Table 2 shows the performance of the application with
different configurations. Combining both techniques, the path
visualization and the density map, allows the visualization of the
trajectory and the density evolution at the same time. The
numbers shown in these tables are partially illustrative, as they
were all obtained from the same machine (Windows 8 x64 2.50
GHz, NVIDIA GeForce GT 750M).

 Table 1. Results without using the proposed techniques.

Nº of full paths Nº of vertices Frame rate (fps)
500 614.915 45

1.000 1.235.883 38
5.000 6.171.165 14
17.000 20.292.474 App crashes

 Table 2. Results using the proposed techniques with 17.000
boats. The last results show the frame rate with both approaches
(path visualization and density map) used at the same time.

Nº of
vertices
per boat

Nº of
vertices

Update
mesh rate

(fps)

Texture
resolution

Frame
rate (fps)

8 136.000 14.9 - 56
15 255.000 11.2 - 49
30 510.000 6.1 - 42

15 255.000 12.3 1024 48
15 255.000 11.1 2048 41
15 255.000 10.3 4096 28
15 255.000 8.8 8192 14

6 Future work

This paper has proposed some strategies to achieve the
visualization of an MMO virtual regatta. Nevertheless, some other
techniques were not used and should be mentioned for future
work.

 · To reduce the size of the recalculated mesh containing the tails
of the boats, the viewing frustum could be considered to discard
samples that fall outside. As the mesh is continuously updated this
would not suppose a big change in the structure of the code.

 · Using more threads to recalculate the mesh would improve the
update rate of the mesh with the short paths. However, this
parallelization would depend on the number of cores of the
machine and it would not solve GPU related bottlenecks.
 · When rendering the density map we tried to visualize the
density of the areas where most boats went by. For this we used a
very low alpha value for each boat’s path, which meant that paths
that would not fall on the main trajectory would be almost
invisible. If alpha is set to have a bigger value, the result in busy
areas will show the same density. One solution would be to use
high dynamic range techniques to obtain information about the
density even when the pixel’s resultant alpha value is over 1.
Another solution would be to change the alpha value of each path,
or part of the path, according to its contribution in the result, i.e.
density map.
 · One of the perks of rendering on the client is that the data
needs to be transmitted first. In our case the file size is
approximately 150 MB, which can take a long time to download.
Parsing all the data is also time consuming and does not allow the
simulation to run until all the data is parsed. Preprocessing and
splitting the binary file into smaller temporal subdivisions would
allow the simulation to start without long hold-ups.
· Another advantage about virtual globes is that information can
be added on it, like the weather conditions and ocean currents.
Wind forecasts during the evolution of the race were added to the
application, but they are out of the scope of this paper.

All the techniques shown in this paper are very particular for this
case, but they could be extended for many other applications. For
example, showing the trajectory and paths of the inhabitants of a
city, bird migrations and many others.

Acknowledgments

This work has been partially funded by the Spanish Ministry of
Science and Innovation (TIN2011-28308-C03-03).

References

BECCARIO, C. 2014. Earth Wind Map, URL:

http://earth.nullschool.net, last accessed: March 2015

BLOWER, J. D., GEMMELL, A., HAINES, K., KIRSCH, P.,

CUNNINGHAM, N., FLEMING, A. AND LOWRY, R. (2007) Sharing
and visualizing environmental data using Virtual Globes. In:
UK e-Science All Hands Meeting 2007, 10-13 September 2007,
Nottingham, UK, pp. 102-109

EVANS, A., ROMEO, M., BAHREHMAND, A., AGENJO, J., BLAT, J.

2014. 3D Graphics on the Web: a Survey. Computer &
Graphics, vol 41, pp 43-61. ISSN 0097-8493

GEDE, M. 2009. Publishing Globes on the Internet. Acta

Geodaetica et Geophysica Hungarica, vol 44, pp. 131-148

KEE, D.E., SALOWITZ, L., CHANG, R. 2012. Comparing Interactive

Web-Based Visualization Rendering Techniques. Tufts
University, Medford, MA.

PRENTICE, C. 2015. Iss Photo Viewer, URL:

http://callumprentice.github.io/apps/iss_photo_viewer/index.ht
ml, last accessed: March 2015

SNYDER, J. P. 1987. Map Projections – A Working Manual. U.S.

Geological Survey Professional Paper 1395, Geological Survey
(U.S.)

http://earth.nullschool.net/
http://callumprentice.github.io/apps/iss_photo_viewer/index.html
http://callumprentice.github.io/apps/iss_photo_viewer/index.html

