
3D Graphics on the Web: a Survey

Alun Evans∗, Marco Romeo, Arash Bahrehmand, Javi Agenjo, Josep Blat

Interactive Technologies Group, Universitat Pompeu Fabra, Barcelona, Spain

Abstract

In recent years, 3D graphics has become an increasingly important part of the multimedia web experience. Following on from the
advent of the X3D standard and the definition of a declarative approach to presenting 3D graphics on the web, the rise of WebGL
has allowed lower level access to graphics hardware of ever increasing power. In parallel, remote rendering techniques permit
streaming of high-quality 3D graphics onto a wide range of devices, and recent years have also seen much research on methods
of content delivery for web-based 3D applications. All this development is reflected in the increasing number of application fields
for the 3D web. In this paper, we reflect this activity by presenting the first survey of the state of the art in the field. We review
every major approach to produce real-time 3D graphics rendering in the browser, briefly summarise the approaches for remote
rendering of 3D graphics, before surveying complementary research on data compression methods, and notable application fields.
We conclude by assessing the impact and popularity of the 3D web, reviewing the past and looking to the future.

Keywords: 3D, Graphics, Web, Survey, Internet, Browser, WebGL, X3D, X3DOM, Three.JS, Rendering, Meshes

1. Introduction

The Web has come a long way since its humble beginnings.
Initially existing as a means of sharing remote pages of static
text via the internet, bound together by a new markup language,
HTML, the release of the Mosaic browser allowed users to
’browse’ remote ’web-pages’ which featured a mixture of both
text and images [1]. Following the release of the Netscape Nav-
igator and Microsoft’s Internet Explorer in the mid nineteen
nineties, development in web-technology exploded. Cascading
Style Sheets (CSS), Secure Sockets Layer (SSL), cookies, Java
and Javascript, Adobe Flash, XML, and AJAX (to name but a
few of the enabling technologies); all were to be incorporated
into the web model during the following years. By the turn
of the millennium, the web was full of professionally designed
pages, rich in visual content - recovering fully and to an un-
expected extent both of initial goals of the web: browsing and
editing content.

Yet full interactive multimedia content was invariably heav-
ily reliant on Adobe Flash. As a proprietary system, Adobe
had free reign to define the functionalities of its browser plugin
[2], without necessarily making any reference to the series of
standards that were being gradually undertaken and adopted by
the World Wide Web Consortium (W3C). Adobe’s closed sys-
tem allowed developers to embed interactive audio, video, and

∗Corresponding author
Email addresses: alun.evans@upf.edu (Alun Evans),

marco.romeo@upf.edu (Marco Romeo), arash.bahrehmand@upf.edu
(Arash Bahrehmand), javi.agenjo@upf.edu (Javi Agenjo),
josep.blat@upf.edu (Josep Blat)

URL: http://gti.upf.edu (Josep Blat)

2D animations into a Flash executable file, which was then ex-
ecuted by the browser-plugin installed on the user machine, al-
most completely bypassing the browser itself. Flash-based ap-
plications typically required (relatively) long download times,
and this fact, coupled with the later lack of availability for Ap-
ple’s iOS platform, meant that Flash lost some of its initial pop-
ularity [3].

Meanwhile, the potential for creating interactive, multime-
dia rich web pages, using open standards methods, grew during
the early part of the new millennium. Firstly, Scalable Vector
Graphics (SVG) was introduced into browsers, allowing com-
plex 2D drawing in a manner which fit in with the existing
style of HTML. Then the canvas element was introduced, also
allowing 2D drawing, but differing from SVG in being con-
trolled via Javascript. First introduced by Apple as part of the
WebKit framework, canvas later became incorporated into the
draft HTML5 standard [4] (along with SVG). HTML5 is (be-
ing) specifically designed to adapt HTML in a way such that it
can be used to make web applications i.e. dynamic interactive
pages which are rich in multimedia content.

This consistent expansion of the scope, power, and com-
plexity of the web has meant that technology previously re-
served for custom software (or even hardware) is now being
used via the web. Once example of such technology is 3D
graphics. While efforts have been made to implement real time
3D graphics over the internet since the mid-nineties (see Sec-
tion 2 below), recent years have seen a rapid growth in its avail-
ability and distribution. This paper presents a survey of the
current state of the art in real-time 3D graphics on the web,
covering rendering techniques, scene description methods, 3D
specific data delivery, and relevant application fields.

Preprint submitted to Computers & Graphics February 24, 2014

Why a survey into 3D web graphics? We see the first of
its kind timely due to a new maturity in the subject. With all
modern versions of major browsers now supporting plugin-free
access to dedicated graphics hardware, and the ever-increasing
power of this hardware, web-based 3D graphics applications fi-
nally have the opportunity to become a ubiquitous part of the
web environment, accessible to everyone. Our goal in this pa-
per is to both provide historical context in addition to assessing
the current state of the art, which we attempt to do by review-
ing the academic literature, assessing trends in the commercial
sector, and drawing on our direct experience in using 3D web
technology. Our hope is that the results of our survey will allow
future developers and researchers to have a more complete un-
derstanding of the field as they proceed with their endeavours.

For the purposes of this survey, we define 3D graphics to be
the use of 3D geometric data (usually through Cartesian coordi-
nates) to perform certain calculations (for example, changes of
form, animation, collision detection etc.) and to create 2D im-
ages suitable for display on a standard computer screen or mon-
itor. The term rendering describes the process of converting the
3D data into a 2D image on a screen. Rendering techniques
vary greatly in terms of their complexity, speed, photorealism
and application. Photorealism is usually judged according the
realism of the 3D shape being rendered, and also how that shape
is shaded (a synonym, in graphics terms, for coloured) with
respect to light sources in the scene. Complex shading tech-
niques, such as ray-tracing and radiosity, produce 2D images
which are more photorealistic, at the cost of increased calcula-
tion time. By reducing the complexity of the algorithms used
to simulate the effect of light in the scene, rendering time can
be shortened to enable applications where the 2D image is up-
dated at framerates fast enough to be undetectable (or barely
detectable) to the human eye. One factor common to most 3D
graphics is the use of perspective projection, where the pro-
jected size of any 3D object onto a 2D image is inversely pro-
portional to its distance from the eye. The use of perspective
projection, homogenous coordinates, and heavy use of 3D vec-
tors in Cartesian coordinates to represent 3D objects, means
that most 3D graphics applications make extensive use of ma-
trix mathematics to both simplify and speed up computation.

The requirement to perform calculations on multiple data
points (either for calculating the projection of 3D data points, or
for calculating the colour of each pixel in a rendered 2D image)
has led to development of specific class of hardware, the Graph-
ics Processing Unit (GPU) which is designed to process several
operations in parallel. The introduction of the modern GPU
heralded an unprecedented reduction in the time taken to render
3D graphics in widespread systems, thus allowing more com-
plex and photorealistic techniques to be applied in real-time. To
harness the power of the GPU, access is usually facilitated via a
low-level API such as OpenGL or Direct3D. OpenGL bindings
exist for most major programming languages and most major
platforms; whereas Direct3D is typically restricted to Microsoft
platforms (Windows or Microsoft games consoles).

In this survey we repeatedly make reference to several ba-
sic terms. Although all of these will be familiar to the graph-
ics community, for clarity we define them here. A real-time 3D

Scene features one or more objects, which can be represented in
an implicit manner (such as using NURBS) or, more commonly,
as polygonal Meshes. Object appearance (colour, reflectivity,
transparency etc.) is described by an associated Material. Ma-
terials frequently define colours according to textures: arrays
of colour values usually loaded from 2D image files. These
image files, along with any other file which is loaded into the
scene (for example, to specify the structure or the behaviour of
a Mesh), are frequently called Assets. A Scene also contains a
viewpoint or camera, as well as one or more light sources, and
may be organised into structure called a Scene Graph, where
the contents of the scene are organised logically (e.g. imposing
a hierarchy) and spatially. Scene Graphs are frequently used
in 3D rendering engines to group scene objects together such
that different rendering processes may be applied to different
groups.The components of a fixed pipeline programme use al-
gorithms predefined by the 3D programming API to calculate
the position and colour of the assets in the Scene, depending
on the point of view of the camera and location of any light
sources. A programmable pipeline approach requires the pro-
grammer to carry out such calculations manually in a shader,
which is a separate programme compiled at run-time and ex-
ecuted on the GPU. It follows therefore, that a programmable
pipeline approach requires the programmer to have deeper un-
derstanding of the underlying mathematics, while also allow-
ing a much finer level of control of the appearance of the final
scene.

The remainder of this survey is organised as follows. We
first review the state of the art in web based 3D rendering, in-
cluding historical approaches (Section 2), before presenting an
overview of the field of remote rendering (Section 3) and how it
applies to the 3D web. We then review techniques of data com-
pression and content delivery (Section 4), of vital importance
to any client-server based scenario, but especially relevant to
3D applications where file sizes are typically large. Following
this we present a selection of standout applications, grouped by
application field, which have contributed to the state of the art
(Section 5). Finally, Section 6 discusses the rise in the popular-
ity of 3D web and concludes the paper.

2. Browser-based Rendering

Jankowski et al [5] classify browser-based 3D rendering
(i.e. where the client browser/machine executes the rendering
process) into declarative and imperative techniques, creating a
matrix which classifies 2D and 3D graphics according to the
different paradigms. Figure 1 is an adaptation of their classifi-
cation. For example, it is possible to draw 2D graphics within
the browser using both SVG and the HTML5 canvas element:
SVG [6] is an XML-based file format for two dimensional vec-
tor graphics - drawing and image filter effects are coded in a
declarative manner. By contrast, similar drawing and image
processing can be achieved by using the <canvas> element in
an imperative way using Javascript. Jankowski et al extend this
declarative/imperative distinction into the world of 3D browser-
based graphics, referencing some of the approaches which we
discuss below.

2

Approach Requires Plugin Part of HTML
Document

DOM Integra-
tion

Inbuilt Scene
Graph

Customisable
Pipeline*

Standards-
based

X3D yes no no yes no yes
X3DOM no yes yes yes no yes
XML3D no yes yes yes no partial
CSS Transformsj no partial yes no no yes
O3D no longer no no yes no partial=

Three.JS no no no yes yes partial=

Stage3D (Flash) yes no no no yes no
Java yes no no yesC yesC no
Silverlight yes no no no yes no
Native WebGL no no no no yes yes
Unity3D v yes no no yes no no

Table 1: Approaches to browser-based 3D rendering, classified according to level of declarative behaviour. * A customisable pipeline is one where the programmer
has low-level control over the render targets, render order, scene graph, materials and associated shaders. j While CSS transforms are not true rendering per se,
they are included for completeness. = Both O3D and Three.JS can render via WebGL, which is standards based. C Only certain Java libraries and APIs have these
functionalities. v Unity3D is included as a (popular) example of proprietary games engines (see section 2.12)

Figure 1: Declarative vs Imperative approaches to web-based graphics (adapted
from [5])

The declarative/imperative distinction for web-based 3D graph-
ics is useful, particularly as it allows comparison to the equiva-
lent 2D cases. Nevertheless, when considering the broad spec-
trum of browser-based 3D rendering techniques, it becomes dif-
ficult to impose such a strict classification. For example, many
of the approaches surveyed in this section are based on pro-
gramming languages which follow an imperative paradigm, yet
some of them also make heavy use of a Scene Graph, which
could be considered a declarative construct. Table 1 shows a
comparative summary of the browser-based 3D rendering ap-
proaches surveyed in this paper, particularly from the point of
view of their classification as declarative or imperative. An ap-
proach can be said to be more declarative than imperative if:

• It is part of the HTML document (i.e. it uses a text format
to declare content without direct context)

• It is capable of integrating with the Document Object
Model (DOM)

• It features a scene graph

• It does not allow overloading of the rendering pipeline

• It has a high level of platform interoperability

Other important characteristics, such as the requirement for
plugins, and whether the approach is standards based or not, are
also listed in the table. The remainder of this section surveys
each of these technologies in turn.

2.1. VRML, X3D and ISO Standards

In 1994, David Raggett, in parallel with Mark Pesce and
Tony Parisi called for development the Virtual Reality Mod-
eling Language (VRML) file format to describe a 3D scene
[7], and the format (in its second version) became an ISO stan-
dard (ISO/IEC 14772-1:1997) in 1997. VRML97, as it became
known, uses text to specify the both the contents and appear-
ance of a scene (i.e. associating a mesh with a particular ma-
terial) but does not allow the specification of more advanced
3D concepts such as NURBS (implicit surfaces) or complex
animation. Shortly after the definition of VRML97, and in or-
der to protect it as an open standard, the Web3D consortium
was formed, as a cross-section of businesses, government agen-
cies, academic institutes and individuals. Several applications
and browser plugins were developed to enable the display of
VRML scenes in the browser, such as Cosmo Player, World-
View, VRMLView, and Blaxxun Contact. In many respects,
these applications formed the first efforts to bring 3D graphics
to the internet.

Despite these efforts, support for the format was intermit-
tent [7], and in 2004 VRML was replaced by X3D (ISO/IEC
19775/19776/19777). While designed to be backward compat-
ible with VRML, it provides more advanced APIs, additional
data encoding formats, stricter conformance, and a componen-
tized architecture [8]. The most immediate difference to VRML
is the syntax: while X3D still supports the traditional VRML
’C-like’ syntax, it also adds support for binary and XML for-
mats. The latter is important as it is a standard format widely
used in web-technologies, and thus brings X3D closer to the
web. X3D supports a multi-parent scene-graph and a runtime,
event and behaviour model; as well as a dataflow system which

3

integrates sensor, interpolation and visualisation nodes. All this
permits the description of animated scenes in a declarative man-
ner and without using imperative scripting techniques. X3D
is designed to be used in both web and non-web applications;
in that sense, it can be said more precisely that X3D is con-
cerned with internet-based 3D as opposed to purely web-based.
As such, an X3D enabled application (whether standalone soft-
ware, or browser plugin) is required to view and interact with
X3D scenes. Web browser integration involves the browser
holding the scene internally, allowing the plugin developer to
control and update content via a Scene Access Interface.

2.2. X3DOM
In an attempt to extend browser support for X3D, in 2009

Behr et al [9], introduced X3DOM. X3DOM provides native
browser, plugin-free (where possible) and independent 3D ca-
pabilities, and is designed to integrate closely with standard
web techniques such as AJAX. It maintains the declarative na-
ture of X3D and is, in effect, an attempt to code X3D directly
into a web page, without the need for a browser plugin. X3DOM
is defined as a front-end and back-end system, where a connec-
tor component transforms a scene defined in the front-end (the
DOM) to the backend (X3D). The connector then takes respon-
sibility for synchronising any changes between the two ends of
the model. X3DOM defines an XML namespace [10], to enable
an <x3d> tag (and all of its children) to be used in a standard
HTML or XHTML page. An example of the code required to
draw a scene featuring a sample mesh is shown below, starting
from the initial <body> tag of an XHTML file (vertex data of
the object is redacted for brevity). The result of this code, when
loaded in a web browser, is shown in Figure 2:

<body>

<X3D

xmlns="http://www.web3d.org/specifications/x3d-namespace"

width="400px" height="400px">

<Scene DEF=’scene’>

<Viewpoint position=’0 0 300’

orientation="0 0 0 1" />

<Background skyColor=’0.6 0.6 0.6’/>

<Transform translation=’0 10 0’ >

<Shape>

<Appearance DEF=’App_0’>

<Material diffuseColor="0 1 0" shininess=’0.15625’/>

</Appearance>

<IndexedFaceSet creaseAngle=’4’ coordIndex=’

[indexed vertex coordinates for model]

’/>

</IndexedFaceSet>

</Shape>

</Transform>

</Scene>

</X3D>

<script type="text/javascript" src="x3dom.js"></script>

</body>

This code snippet uses hierarchical declaration to create a
3D <scene>. A viewpoint position and orientation is set, as is
the background colour. A <transform> tag defines translation,
rotation and scaling transforms which apply to the tag contents
(in this case all the content defined within it should be is trans-
lated by 10 units in the y-axis). The <shape> tag defines an

Figure 2: Screenshot taken from a Mozilla Firefox browser window executing
the X3DOM code shown above.

object in the scene, within which the objects properties (such as
the mesh and appearance) are defined in parallel. The mesh in
this scene is defined as a set of indexed faces; no normal vec-
tors are supplied so X3DOM calculates them to enable lighting
effects.

For rendering the scene X3DOM defines a fallback model
[11], trying to initialise preferred renderers first, and using al-
ternative technology if required. Currently the fallback model
first checks whether the user application is capable of rendering
X3D code natively, and is so, passes the contents of the <x3d>

tag to the X3D rendering engine defined by the host application.
If native X3D rendering is not detected, or an X3D browser plu-
gin is not installed, the application tries to create a WebGL ren-
dering context, and build the X3D scene graph on top of that.
With the partial integration of WebGL into Microsoft Internet
Explorer 11 [12], the majority of modern browsers now support
browser based 3D rendering via WebGL (see below). If WebGL
is not supported, X3DOM tries to render with Stage 3D (see
Section 2.10 below) before finally presenting a non-interactive
image or video if no 3D rendering is possible.

X3DOM is designed to integrate with the DOM and thus
can be modified in the same manner as any DOM object. For
example, if the programmer wished to modify the position of
the shape at runtime (for example, in response to user input), the
translation attribute of the <transform> tag can be modified at
runtime using Javascript, and the scene will update accordingly.

3D models can be loaded into X3D/X3DOM by defining
vertex geometry as in the example above, or by importing an
X3D (or VRML) scene defined in a separate file. This scene
file can be coded manually or, for complex objects and scenes,
it can be created using custom export plugins for 3D digital

4

content creation (DCC) packages (such as Blender, Autodesk
Maya, and Autodesk 3D Studio Max). Basic shading (such as
diffuse or specular shading) is supported in a declarative man-
ner. Schwenk et al [13] [14] added a declarative shader to X3D,
enabling advanced 3D effects and lighting (such as multi tex-
turing, reflections and other lighting effects), this is now par-
tially supported in X3DOM. Custom shaders are supported via
the ComposedShader node; this allows the programmer to write
their own shader code as long as uniform data is restricted to a
supported set and naming conventions. In 2011, Behr et al ex-
tended their framework with various functionalities [15]. Sev-
eral camera navigation methods were introduced, defining a
Viewpoint node (seen in the above example) and several different
navigation patterns (definition of custom camera navigation is
also supported via manipulation of the equivalent DOM node,
for example, via Javascript). Also introduced was simple ob-
ject animation, either via CSS transforms and animations (see
below) or by the X3D Interpolators.

2.3. XML3D

XML3D [16] is similar to X3DOM, in that it is an extension
to HTML designed to support interactive 3D graphics in the
browser, requiring the use of XHTML. Its stated goal is to try to
find the minimum set of additions that fully support interactive
3D content as an integral part of 2D/3D web documents. It takes
a similar high-level approach to 3D programming as X3DOM:
both use declarative language to define a 3D scene, and both
expose all elements of the 3D to the DOM (with the benefits
of DOM manipulation that arise thereafter). The central dif-
ference between the two approaches is that X3DOM grew out
of an attempt to natively embed an existing framework (X3D)
into a browser context, whereas XML3D proposes to extend
the existing properties of HTML wherever possible, embedding
3D content into a web page with the maximum reuse of exist-
ing features. The sample XML3D code below draws a similar
scene to the X3D code above (for brevity, standard html code
such as the body and head tags are excluded, along with lines
to load XML3D libraries and the data for the mesh):
<xml3d id="BunnyXML3D" activeView="#defaultView"

class="xml3d" style="width: 400px; height: 400px;" >

<defs id="mainDef">

<transform id="t_Light" rotation="20 22 92 190"

scale="1.0 1.0 1.0" translation="400 100 600">

</transform>

<transform id="t_Bunny" rotation="0.0 0.0 0.0 0"

scale="1.0 1.0 1.0" translation="0.0 0.0 0.0">

</transform>

<data id="mesh_bunny">

<float3 name="position">[vertex coordinates for model]

</float3>

<float3 name="normal">[normals for model]

</float3>

<int name="index">[indices for model]</int>

</data>

<lightshader id="ls_Spot"

script="urn:xml3d:lightshader:point">

<bool name="castShadow">true</bool>

<float3 name="attenuation">1.0 0.03 0.00</float3>

<float3 name="intensity">1.0 1.0 1.0</float3>

</lightshader>

<shader id="Material" script="urn:xml3d:shader:phong">

<float name="ambientIntensity">0.0</float>

<float3 name="diffuseColor">0.4 0.12 0.18</float3>

<float3 name="specularColor">0.5 0.5 0.5</float3>

<float name="shininess">0.2</float>

</shader>

</defs>

<view id="defaultView" position="0 0 300"></view>

<group shader="#Material" transform="#t_Bunny">

<mesh src="#mesh_bunny_noMat" type="triangles"/>

</group>

<group transform="#t_Light">

<light shader="#ls_Spot"></light>

</group>

</xml3d>

In this example, a <defs> tag allows the definition of var-
ious transforms, the data for the mesh to be displayed, and
shaders and their uniforms, along with a light (position and in-
tensity), and the eye view position. Transforms are defined as a
tag, as in X3DOM, although they could be specified using CSS
transforms (see below) for those browsers that support them,
fulfilling the authors’ goal to reuse existing features as much as
possible. Shaders can also be defined using a fixed number of
CSS properties (again, with the goal of extending existing func-
tionality). Once all the definitions are finished, the viewpoint is
defined, and mesh and light added to the scene. In this case, the
3D mesh is defined in line, but 3D objects can also be loaded
from an external file with the mesh data - stored, for example,
in a JSON, XML or binary file.

XML3D also introduces another level of abstraction, seen
in the example above, by using Data Containers, defining a
<data> tag which wraps the primitive data [17]. This definition
of a declarative data containers allows the piping of the data
to processing modules (see Section 2.4 below) which in turn
permits the complex geometry transformations required for dy-
namic meshes and certain graphical effects.

XML3D rendering is implemented both in WebGL and also
as a native component for the Mozilla browser framework (sup-
porting Firefox) and Webkit-based browsers (supporting Google
Chrome and Apple Safari). The native component was ap-
parently implemented in order to avoid any performance issue
with the Javascript/WebGL implementation (specifically, slow
Javascript parsing of the DOM, and limitations of the OpenGL
ES 2.0 specification).

2.4. Xflow

The needs of interactive 3D graphics applications go be-
yond simply drawing and shading meshes. Techniques such as
character animation, physical material simulation, and render-
ing complex effects such as smoke or fire typically require a
considerable amount of runtime data processing. X3DOM, as
previously mentioned, passes such issues to the X3D backend
and synchronises the results to the DOM front end, yet this op-
tion is hamstrung by Javascript’s slow parsing of the DOM, and

5

furthermore is not available to alternative approaches such as
XML3D. Thus, in 2010 Klein et al. proposed a declarative solu-
tion to intensive data processing on the web, called Xflow [17].
Xflow is a system for exposing system hardware in a declarative
manner and allowing dataflow programming. Examples of 3D
graphics applications for this technique are modifying vertex
data for animated or otherwise dynamic meshes, animation of
shader parameters, and image processing and post-processing.

In essence, Xflow can be thought of as a data processing ex-
tension to XML3D. Xflow is integrated into XML3D and pro-
vides a crucial extension by defining a compute attribute for
defined data containers. This attribute is used to provide pro-
cessing operators to the data defined within a container (for ex-
ample, for skeletal animation).

2.5. CSS 3D Transforms

CSS transforms are a part of the W3C specification which
allow elements styled with CSS code to be transformed in two
or three dimensional space. Originally developed by Apple as
part of the WebKit framework [18] (and thus functional in Sa-
fari and Chrome browsers), these transforms are now fully sup-
ported by Mozilla based browsers and almost fully supported in
Internet Explorer.

3D transforms work by initially setting a perspective to the
scene (using transform: perspective(value); or more sim-
ply perspective: value ;). Once set, standard 3D transforms
such as translation, rotation and scale can all be applied in three
axes. By using CSS Transitions [19], simple animation between
different states can be achieved. Object shading must be spec-
ified manually by defining colour or texture information (as an
image) as with standard CSS.

CSS 3D transforms provide a very fast, easy to understand
method of coding simple 3D effects into a webpage. One in-
teresting aspect of their use is that existing 3D content, such
as a DOM element (for example, a canvas) which features 3D
graphics rendered by other techniques, can be further trans-
formed using CSS 3D. Nevertheless, the lack of true lighting
and shading capabilities means CSS 3D is very limited in what
can be achieved with more powerful declarative solutions such
as X3DOM or XML3D.

2.6. Collada

Collada [20] it is a declarative file format used for describ-
ing a 3D scene, and while it does not feature any form of run-
time or event model, its popularity as an interchange format for
web based 3D graphics means that it is included in this sec-
tion for completeness. Initially developed by Sony and Intel,
it is now managed by the Khronos Group (see WebGL section
below) and is an open standard with ISO/PAS 17506. Apart
from describing basic object parameters such as shape and ap-
pearance, Collada also stores information about animation and
physics. Superficially, it is similar to X3D, in that both define
XML schemas for describing 3D scenes, and were specifically
designed for transfer of digital assets in a standardised man-
ner. X3D scenes, however, are designed to rendered with spe-
cific X3D capable software (such as browser browser plugins

Figure 3: Screenshot from the Barcelona World Race browser-based MMO
game [23], rendered using O3D (reproduced with permission)

or X3DOM), whereas Collada is designed purely to be a format
for data interchange, and is agnostic as to the rendering engine
used to draw the scene. In 2013, the Collada working group an-
nounced the project to define and create the glTF format [21],
which is designed to better match WebGL processing require-
ments (for example, using typed arrays, and storing geometry
and texture assets in binary format

2.7. Javascript access to graphics hardware

In contrast to declarative or functional programming, the
paradigm of imperative programming describes computation as
a series of statements which change a programme’s state. It
could be argued that most computer programming must even-
tually reduce to imperative code, in the sense that most low
level hardware programming (for example with Assembly lan-
guage) is imperative. The traditional language for executing
non-declarative code in the web browser is Javascript, which
has elements of the imperative, object-orientated, and functional
programming paradigms. According to Tony Russell, the Chair
of the WebGL working group, one of the biggest contributing
factors to rise of imperative 3D web programming are the huge
performance increases in the Javascript Virtual Machine, allow-
ing fast control and manipulation of thousands of vertices in 3D
space, in every drawn frame [22].

Although it is possible to create a web-based software ren-
dering algorithm using SVG [24] or the HTML5 Canvas, to-
wards the end of the first decade of the 21st century efforts were
being made to allow imperative programming access to dedi-
cated graphics hardware. Principal among these was Google’s
O3D library [25] [26]. Developed as a cross-platform plugin
for all major browsers and operating systems, O3D originally
provided a Javascript API to enable access to its plugin code
(written in C/C++), which in turn allowed programming of the
graphics hardware, either via Direct3D or OpenGL (the deci-
sion was hidden from the final user). In order to popularise
the technology and to act as tutorials, Google published an ex-
tensive suite of demo web applications made using O3D [25].
Perhaps one of the most visible applications of the technology,
in terms of number of users, was the official MMO game for
the Barcelona World Race sailing regatta, which used O3D to
power its 3D component (see Figure 3). The game developers

6

noted [23] that O3D support for multi pass rendering (impor-
tant for post-processing effects such as shadows, reflections and
weather) were critical in the decision to use the API ahead of
other options such as the nascent Stage 3D from Adobe (see
below). This conclusion was in agreement with Sanchez et
al. [27], who concluding that O3D demonstrated better perfor-
mance than X3DOM, both in terms of rendering performance
(where frustum culling was possible) and animation. With the
advent of WebGL, the O3D plugin was discontinued, and the
API was ported to use the WebGL renderer; non-rendering ele-
ments of O3D (for example, the Scene-Graph and Events API)
are still accessible and usable.

Besides O3D, other efforts were made to allow access to
the GPU via Javascript. Canvas3D was a Firefox plugin from
Mozilla which allowed the creation of an OpenGL context within
a HTML5 canvas element, and was essentially the precursor to
WebGL (see below). Canvas3D JS [28] [29] was an mid-layer
API designed to simplify its use, and was later adapted to make
use of WebGL (see below). Opera Software (creators of the
Opera web-browser) also released a similar plugin [30] which
allowed access to OpenGL calls via the HTML5 canvas.

All of the above efforts use some form of browser plugin,
usually programmed in C or C++, which essentially acts as
a Javascript wrapper for accessing the graphics hardware via
OpenGL or Direct3D. By 2009, the need to standardise meth-
ods for accessing the GPU via the browser had become clear.
Thus, the Khronos Group (the not-for-profit organisation re-
sponsible for, among other things, the OpenGL specification)
started the WebGL working group, and with input from Mozilla,
Apple, Google, Opera and others, released the version 1.0 of
WebGL in 2011 [31].

2.8. WebGL & Associated Libraries

Khronos describes WebGL thus:
WebGL is a cross-platform, royalty-free web standard for

a low-level 3D graphics API based on OpenGL ES 2.0, ex-
posed through the HTML5 Canvas element as Document Object
Model interfaces [31].

OpenGL ES (”Embedded Systems”) 2.0 is an adaptation
of the standard OpenGL API, designed specifically for devices
with more limited computing power, such as mobile phones or
tablets. WebGL is designed to use, and be used in conjunction
with, standard web technology; thus while the 3D component
of a web page is drawn with the WebGL API via Javascript, the
page itself is built with standard HTML.

WebGL is purposefully built to be a lean, reasonably low
level API - indeed, the two principal declarative methods men-
tioned above (X3DOM and X3D) both use or have used WebGL
to some extent in their implementations. WebGL is targeted at
the experienced graphics programmer, who has a good knowl-
edge of core graphics concepts such as matrix and vector math-
ematics, shading, and preferably organisation of 3D scenes with
Scene Graphs [22]. The process required to create a simple box
is very similar to that for any OpenGL ES 2.0 renderer: create
a WebGL context (in this case, on a HTML5 Canvas element);
define and load a vertex and a fragment shader and bind any

uniform data; bind data buffers and pass data (for vertices, and
optionally normals, colours and texture coordinates); control
camera and perspective using standard model-view-projection
matrices; and finally draw.

The Khronos group provides several helper Javascript files
which assist in the setup and debugging of WebGL applications,
which are contained within many of the public demos publicly
available on the Khronos site [32]; nevertheless, as mentioned
above, WebGL is clearly aimed at the more experienced graph-
ics programmer. Directly comparing it to the declarative tech-
niques is not particularly worthwhile, as they target different
sections of the developer/artist communities.

A detailed analysis of WebGL is beyond the scope of this
paper, and the reader is directed to several recent books [22]
[33] [34]. However, it is interesting to introduce several Javascript
libraries, whose goal is to abstract WebGL inner workings and
produce higher level code, which have proliferated as a result of
WebGL’s steep learning curve. One of the first of these libraries
to appear was SpiderGL [35] [36]. Its original version consists
of five libraries: GL, which abstracts core WebGL functionali-
ties; MESH, defining and rendering 3D meshes; ASYNC, to load
content asynchronously; UI, to draw the user interface within
the GL context; and SPACE, a series of mathematics and ge-
ometry utilities. Despite abstracting many WebGL functions,
programming an application in SpiderGL still requires knowl-
edge of 3D concepts (more than those required to use XML3D,
for example) and requires at least some basic knowledge of
OpenGL. After its initial impact as the first comprehensive ab-
straction of WebGL, SpiderGL entered a period of extensive
refactoring, from which it emerged with several lower level im-
provements [36], such as custom extensions and better integra-
tion with other libraries.

LightGL is a low-level wrapper which abstracts many of the
more code intensive WebGL functionalities, while still requir-
ing shader programming and matrix manipulation. Agenjo et
al. [37] modify LightGL to use the popular GLMatrix library
[38] to create a tiered API with several layers of abstraction.
OSG.JS [39] is a WebGL framework which aims to mimic an
OpenSceneGraph [40] approach to 3D development. Other li-
braries of note are SceneJS [41], PhiloGL [42], and GLGE [43];
the latter providing a declarative method of programming a 3D
scene, much like X3DOM or XML3D.

2.9. Three.JS

Perhaps the most famous library/API for web-based 3D graph-
ics is ThreeJS [44] [45]. Although originally developed in Ac-
tionScript (see below), it is now an open-source Javascript li-
brary which enables high-level programming of browser-based
3D scenes, such as that shown in Figure 4. Its modular structure
means that several different rendering engines (WebGL, Canvas
and SVG) have been developed to render scene content, and
the library can be (and is being) extended in a distributed man-
ner by several dozen individual contributors. Three.JS features
a scene graph, several types of camera and navigation modes,
several pre-programmed shaders and materials (and the ability
to program custom shaders), Level-of-Detail mesh loading and

7

Figure 4: Car visualisation running in Mozilla Firefox, created using ThreeJS
by Plus 360 Degrees [46] (reproduced with permission)

rendering, and an animation component allowing skeletal and
morph-target animation.

The sample code below demonstrates the steps required to
load a mesh with a simple material, similar to the previous two
code examples (code is Javascript/JQuery, and HTML setup left
out for brevity):
var WIDTH = 400, HEIGHT = 400;

var $container = $(’#container’);

var scene = new THREE.Scene();

var renderer = new THREE.WebGLRenderer();

renderer.setSize(WIDTH, HEIGHT);

$container.append(renderer.domElement);

var VIEW_ANGLE = 45, ASPECT = WIDTH / HEIGHT;

var NEAR = 0.1, FAR = 10000;

var camera = new

THREE.PerspectiveCamera(VIEW_ANGLE, ASPECT, NEAR, FAR);

camera.position.z = 300;

var sphereMaterial = new THREE.MeshLambertMaterial(

{

color: 0xCC0000

});

var pointLight = new THREE.PointLight(0xFFFFFF);

pointLight.position.x = 10;

pointLight.position.y = 50;

pointLight.position.z = 130;

var loader = new THREE.OBJLoader();

loader.load(’bunny.obj’, function (object) {

object.traverse(function (child) {

if (child instanceof THREE.Mesh) {

child.material = sphereMaterial;

}

});

scene.add(object);

});

scene.add(camera);

scene.add(pointLight);

animate();

function animate() {

requestAnimationFrame(animate);

renderer.render(scene, camera);

}

Beyond the obvious changes in language syntax, the Three.JS
approach is not dissimilar to those of X3D and XML3D de-
scribed above, particularly XML3D. A Material, a Mesh, a Cam-
era and Light must all be defined by being added to the scene. In
this example the mesh is loaded from an external file (using the
ubiquitous Wavefront Object format) via an asynchronous load-
ing method. Once the mesh file has been downloaded and the
mesh object created, it is assigned a material and added to the
scene using a callback function. This ability to call functions
is a major difference in comparison with declarative examples
above, and is seen again in the final few lines, which are specific
instructions to request a new animation (or drawing) frame from
the browser, and render. Without this final imperative part, the
code would download the mesh object correctly and add it the
scene, but nothing would appear in the viewport, as there would
have been no command to render the scene executed after the
object was downloaded.

2.10. Stage 3D

As mentioned above, Adobe’s Flash plugin is a proprietary
system which allows multimedia content to run inside a web
page which has the Flash plugin enabled. Although there were
initial attempts to embed 3D graphics into Flash (such as the
now disappeared Papervision [9]) these relied on software ren-
dering techniques which did not allow access to the GPU. Stage
3D is Adobe’s proprietary 3D engine [47], with the key differ-
ence being that it allows allows Flash and AIR applications to
draw hardware accelerated 3D graphics. Stage 3D applications
are written in ActionScript, an object-oriented language devel-
oped to write Flash-based applications. Stage3D is marketed as
a medium-low language for 3D graphics programming, allow-
ing platform independent programming of applications that are
fully compatible with existing Flash libraries. It is quite low
level in that a sample application must deal directly with vertex
and index buffers, shaders, and the Model/View/Projection ma-
trices common to many 3D applications, and there is no built-in
scene graph. The application code is compiled against rela-
tively high level libraries, allowing drawing to contexts which
allow seamless merging with 2D Flash, and/or Flash Video con-
tents; this means that many low-level hardware aspects are hid-
den from the programmer by proprietary libraries. Shaders in
Stage 3D are written in Adobe Graphics Assembly Language
(AGAL), a very low level assembly language, which makes
writing shaders for Stage 3D a more laborious task compared
with writing shaders in a higher level language such as GLSL
or HLSL, which are the shading languages for OpenGL and
Direct3D, respectively. Adobe has made efforts to develop a
higher level shader creation package called Pixel Bender, though
as of 2013, development of this tool appears to have stalled.

8

2.10.1. Silverlight
Microsoft Silverlight is an API for developing web-based

applications, not dissimilar to Adobe Flash. It facilitates the
creation of interactive multimedia applications and their dis-
tribution via web, with client side execution depending on a
browser plugin which the user must install. Silverlight applica-
tions are created using Microsoft’s .NET framework. Version 3
of Silverlight introduced basic 3D transforms (similar to mod-
ern CSS 3D transforms), but the current version (version 5) now
features a full programmable graphics pipeline, allowing access
to the GPU and shader programming.

2.11. Java

The Java platform, developed initially by Sun Microsys-
tems before its merger with Oracle, is now an established part
of modern computing. From a web perspective, the ability to
launch a Java applet (a small application which is executed
within the Java Virtual Machine) within the browser, was one
of the earliest ways to programme more computation-expensive
visualisations [48]. In particular, it is possible to allow Java ap-
plets to access the GPU which, prior to the advent of WebGL,
was one of the earlier methods of accessing hardware accel-
eration from a web page without relying on a custom browser
plugin.

In 1998, the Java3D API was released to facilitate 3D devel-
opment with Java [49]. Java3D features a full scene graph and
is able to render using Direct3D or OpenGL. Development on
Java3D was abandoned in 2008 as Sun Microsystems moved to
push its new JavaFX platform, though development on Java3D
has been restarted by the JogAmp community [50]. For lower
level access (i.e. wrapping OpenGL functions directly) other
libraries exist such as JOGL [50] or LWJGL [51]. The latter is
the basis of the popular multiplatform game, Minecraft, whose
well documented success demonstrates that a Java based ap-
proach to web 3D graphics can be a viable option for many
developers.

2.12. Proprietary Videogame Engines

The video game industry has long been a showcase for the
latest graphics technology (and a driving force for the constant
performance increases and lower prices of GPUs), and it is not
surprising that there have been commercial efforts to make 3D
video games available via the browser. However, the historical
lack of full cross-browser support for WebGL (only recently
overcome with the release of Microsoft Internet Explorer 11),
and the natural desire of companies to target the widest possible
user base, has meant that WebGL-based 3D gaming is still in its
infancy (see also Section 5.3).

Unity is a cross-platform game engine featuring advanced
3D graphics capabilities [52]. Compared to the other technolo-
gies described thus far, Unity is much higher level, aiming to be
an application for creating video games (and, thus, more than
simply a 3D engine for the web). Nevertheless, Unity’s ease of
use in creating a 3D scene and exporting it to a webpage, and
popularity among the public web (225 million claimed installs
of the web-player plugin, as of 2013 [53]) merits its inclusion in

Figure 5: The Unity IDE and game engine has become a popular way to quickly
embed 3D graphics into a web-browser

this paper. Unity’s technology is split into two applications - an
Integrated Development Environment (IDE) (see Figure 5) for
the creation of a scene/game, and a Player plugin/standalone
application which allows Unity scenes/applications developed
with the IDE to be executed on a target platform. At its most
basic level, creating a 3D scene for the web in Unity involves
dragging and dropping 3D assets into a viewport, optionally
setting material, light and camera settings, and then exporting
the scene to a custom file format. The Unity web-browser plu-
gin (available for all major browsers) reads this file and display
the scene in the browser window. Beyond the drag and drop
capabilities of the IDE, a Unity scene can be modified (or even
created) entirely in code, either via Javascript, C# or Boo. Unity
also allows exporting applications to other platforms, including
mobile platforms such as iOS and Android.

Other companies have made short-term efforts to present
video games as browser-based experience; for example Epic
Games’ Unreal Engine has in the past featured a web player
component and now has a HTML5/WebGL-based demo avail-
able [54]; while the game Battlefield Heroes [55] from DICE is
a purely browser based experience which requires downloading
a plugin.

3. Remote Rendering

The concept of remote rendering involves the server-based
generation of data, which is then passed to a client for visualisa-
tion. Much of the research in this field does not apply directly
to web-based 3D graphics, in that it focuses on client-server
rendering systems where the client is usually a non-web appli-
cation. However, the increasing use of the web-browser as a
3D graphics client (as demonstrated in this paper) means that
we consider it appropriate to include a brief survey of remote
rendering techniques.

Commercially, remote rendering of 3D graphics for video
game purposes has been exploited by at least two startup com-
panies, Onlive [56] and Gaikai [57], the latter being purchased

9

by Sony in 2012 [58] for $380 million. From a research per-
spective, it is possible to roughly classify the different approaches
to remote rendering into three areas: Graphics Commands, Pix-
els, and Primitives or Vectors. A fourth server-based process,
that of parsing, segmenting and/or simplifying 3D objects, also
falls under the remote rendering definition, but is not included
in this section as it is reviewed in detail in section 4 below.

3.1. Graphics Commands

Low-level draw calls to the server GPU are intercepted and
passed to the client [59], which then renders and displays the
final image. This technique has been adapted by Glander et al.
[60] for parallel WebGL visualisation of existing 3D desktop
applications, using AJAX to synchronise the two rendering ap-
plications. Furthermore, there are efforts being made to directly
convert C/C++ code (via LLVM bytecode) to Javascript [61].

3.2. Pixels

The server renders the image and passes it directly to the
client for display [62] [63] [64]. This basic method of remote
rendering can be viewed as a generic data transfer issue, essen-
tially sampling the remote system graphics buffer and sending
it to the client as a video stream [65]. Several optimisations
can be made to this technique, such as synchronising a high-
end server render with a low-end client render [66], selectively
transmitting pixels [67], or optimising the video encoding to
take advantage of GPU-rendered scenes [68].

3.3. Primitives or Vectors

Feature extraction techniques are used on the server to ob-
tain vectors to be passed to the client to render, either in 2D
[69] or 3D [70]. The advantage of this method is that it that
client devices which do not have any native 3D capabilities can
render 3D objects from the passed vector data, as the costly 3D
transformations are being executed by the server.

3.4. Combined Techniques

Finally there have been efforts which combine several of
these techniques, such as the parallel client-server image-based
rendering by Yoon [71], or the Games@Large platform [72].
The latter captures the rendering instructions of an application
at run-time, and sends changes in that scene to the remote client,
which is rendering the scene locally. If the client is not capable
of rendering the scene locally, a video stream is sent instead.

As scientific datasets become ever larger, the challenge of
viewing and interacting with them locally has increased, and
there has been a move to storing the data on central parallel
clusters, and interacting with data via remote clients. ParaView
[73] is a multi platform, open source data analysis and visual-
isation application, built on top of VTK and extended to sup-
port parallel cluster rendering. Recently it has been extended
to enable 3D visualisation via a web-based context, called Par-
aViewWeb [74], which allows a user to access a ParaView ren-
dering cluster from within a web page.

One concrete application of remote rendering is in collab-
orative visualisation, as the same scene must be rendered in

real-time to multiple users, via either a client-server model,
a peer-to-peer model, or a hybrid of the two. The Resource-
Aware Visualisation Environment (RAVE) [75] was created in
order to demonstrate whether web services were capable of sup-
porting collaborative visualisation (not dissimilar to the Games
@Large approach). It uses a Java applet on the client to deter-
mine the client’s rendering capabilities - less powerful clients
receive a video-feed from a remotely rendered scene, whereas
more powerful clients receive the polygonal dataset to render it
locally. The system was extended to support the X3D format
with ShareX3D [76], which was the first implementation of a
collaborative 3D viewer based on HTTP communication. A
more comprehensive survey of collaborative visualisation sys-
tems, including some applications to the 3D web, is presented
in [77].

4. Data Compression & Delivery

For the majority of the techniques for browser-based 3D
graphics described above, the 3D data are represented by poly-
gon (usually triangle) meshes, composed of vertices and faces.
Such data, when describing an object in great detail, can be rel-
atively large in size if unoptimised. For example, a laser scan
of a large 3D object will result in a file which is hundreds of
megabytes in size. Large file size has serious performance im-
plications (both in terms of parsing and rendering the data); to
offset/reduce these implications, there has been considerable re-
search effort made into mesh optimisation techniques [78] [79],
and mesh segmentation [80]. However, many mesh compres-
sion methods are highly geared towards dealing with specific
type of data, and are not designed to handle arbitrary meshes
including normal and texture information i.e. meshes for the
web [81].

4.1. Compression & Optimization

Progressive Meshes (PM), proposed originally in 1996 by
Hoppe [82], allow continuous, progressive refinement of a polyg-
onal mesh during data transmission over a network. PM works
by initially transferring a coarse mesh from server to client, then
progressively refining the mesh using a stream of vertex-split
operations, until the high resolution mesh has been recreated.
Limper et al. [81] summarise reported decode times and com-
pression performance for the original PM technique and several
of its subsequent refinements. They found that Hoppe’s 1998
implementation of Progressive Meshes [83] still provides the
fastest decompression time, despite several attempts to improve
upon it, and not taking into account the improvements in hard-
ware capabilities since 1998. On the other hand, the compres-
sion factor (i.e. how many bits each vertex occupies) is an order
of magnitude less for more modern techniques - for example,
that of Maglo et al. [84]. The conclusion therefore is that mesh
compression research over the last decade has focused more on
improving pure compression (rate-distortion) performance, and
less on its speed. With this in mind, and combining the con-
clusion of both Limper et al. [81] and Lavoué et al. [85], it is
possible to draw a series of requirements for mesh compression

10

for web-based 3D rendering, separate from the requirements of
more general mesh compression:

Rate distortion versus decompression speed Mesh compres-
sion techniques for web-based 3D graphics present a spe-
cial case where both decompression speed and download
speed contribute to the overall performance of a given
technique. An algorithm which achieves very high com-
pression rates (for example, that of Valette et al [86])
may not be suitable for a web-based system, in that the
decompression rates are comparatively slow [81]. This
problem is particularly relevant currently, where despite
increasing network bandwidth (allowing rapid data trans-
fer), there has been a parallel increase in low-power mo-
bile devices which may struggle to execute complex de-
compression algorithms.

Browser-based decompression On the other hand, plugin-free
browser-based 3D may necessitate decompression using
Javascript. For all the improvement in Javascript exe-
cution time in recent years, it is still slower than native
code [87]. Given that much of the literature on progres-
sive meshes reports results with native code, and despite
possibilities to speed up decompression using the GPU
techniques, the requirement to implement the code with
Javascript is not to be underestimated.

Multiple scene objects A typical 3D scene for web-based ren-
dering may feature several objects of varying topological
complexity and size. It may also feature modification or
animation of these objects. Classic Progressive Meshes
algorithms work well with regularly-sampled, closed sur-
faces, and as a result may not function correctly or effi-
ciently in many use-cases for the 3D web - or at the very
least, some form of pre-processing step is required to split
and classify the meshes before compression.

Various data sources for a single object Basic PM does not
take into account vertex properties other than position.
While vertex position is naturally the most important com-
ponent of any mesh(as it describes the shape), a mesh
object may store several other components which are im-
portant for display, such as normal vectors, texture coor-
dinates and colour values.

In recent, years, however, there have been several research
efforts to address these four points and create a viable method
for mesh compression more suitable to web-based contexts. Tian
and AlRegib [88] present a method to compress texture resolu-
tion in parallel with mesh vertex resolution. The authors note
that geometric inaccuracies in the compressed mesh may be ei-
ther enhanced or dissimulated by errors in the compressed tex-
ture; however, refining first the mesh and then the texture is not
efficient, as either a full resolution mesh with a coarse texture
or a full resolution texture with a coarse mesh will not generally
provide good visualisation for the textured model. Thus, they
propose a progressive solution which attempt to refine both the
mesh and the texture in the same bit-stream, by proposing a bit-
allocation framework. More research on bit-allocation for mesh

compression has been carried out by King and Rossignac [89],
who use a shape-complexity measure to optimise distortion for
a given bit rate; and by Payan and Antonini [90] who use a
wavelet based method; although neither of these techniques are
adapted for progressive transmission [91].

While several methods for encoding colour information ex-
ist (for example, Ahn et al. [92], who encode indices of each
vertex in a colour mapping table; or Yoon et al. [93] who intro-
duce a predictive method based on geometry information), only
in recent years have efforts been made for progressive meshes.
Cirio et al [94] propose a technique that allows any property
or set of properties (such as vertex colours or normals) to drive
a compression algorithm based on kd-trees. Lee et al. [91]
propose a progressive algorithm which is based on the valence-
driven progressive connectivity encoding from Alliez and Des-
brun [95], and this technique is further optimised for the web
by Lavou et al. [85]. A mesh is encoded by progressive steps
of decimation and cleansing, and colour components are quan-
tised adaptively according to level of details. Lavou et al [85]
also present several implementational details specific to decom-
pression using Javascript, such as the use of Array Buffers and
the minimisation of garbage collection, as it was found that the
latter process used blocked performance in unacceptable ways.
Gobbetti et al. [96] convert input meshes to equally sized quad
patches, each one storing vertex, colour and normal informa-
tion, and which are then stored in an image format. This allows
to use the atlas images for multi-resolution, and fast rendering
using simple mip-map operations. Limper et al. [97] present a
progressive encoding scheme for general triangle soups, using
a hierarchy of quantisation to reorder the original primitive data
into nested levels of detail.

Mesh compression faces further problems when the cho-
sen rendering framework relies on declarative markup, such
as X3D/X3DOM or XML3D, as one of advantages of those
frameworks (the ability to describe a scene with clear, human-
readable code) causes difficulties when loading scenes with very
large meshes - parsing text files of hundreds of megabytes is ef-
fectively impossible for web browsers (although applying HTTP’s
GZIP compression can greatly reduce file sizes). Behr et al.
[98] counter this by taking advantage of Javascript Typed Ar-
rays to introduce a BinaryGeometry component to X3DOM, al-
lowing the scene to be described in a declarative manner, but the
content geometry to be passed to the client as raw binary data.
Once the data has been downloaded, it can be passed immedi-
ately to the GPU memory, which effectively eliminates the rel-
atively slow Javascript parsing of the data. Transmission speed
of binary data can be reduced by compressing it, for example
using the OpenCTM format [99], which is designed specifically
to compress mesh data. The downside of using compression for
web-based methods is, as always, the associated decompression
cost in the Javascript layer.

In 2011, Google launched the Google Body project [100],
an interactive browser-based visualisation of the human body.
The development of this work also resulted in the creation of
WebGL-Loader [101], a minimalistic Javascript library for com-
pact 3D mesh transmission. It takes full advantage of in-built
browser features, such as support for GZIP and the UTF-8 file

11

format, to attempt to enable fast decompression of mesh data in
Javascript, using predictive techniques. Limper et al. [81] con-
ducted a case-study to compare WebGL loader with OpenCTM
[99], X3DOM’s Binary Geometry [98] and standard X3D. Their
results demonstrated the balance between file-transmission size
and decompression rate; at low bandwidths, techniques which
minimised file size (such as CTM compression) provided bet-
ter results, while at high bandwidths, the speed of transfer of
Binary Geometry to the GPU ensured best performance. While
this initial result is not surprising, in the mobile context the re-
sult was different: the decreased power of the hardware meant
that any technique which relied on heavy decompression suf-
fered in comparison, even at high bandwidths.

4.2. Selective Transmission of Geometry
In 1996, Schmalstieg and Gervautz [102] proposed an early

approach to optimising the transmission of geometry for dis-
tributed environments, arguing that the network transmission
rate is the bottleneck in such a system (perhaps as true in the
current day as it was in 1996). The authors proposed a sys-
tem of demand-driven geometry transmission as a method for
efficient transmission of geometric models, which was later ex-
panded by Hesina [103]. A server stores data for all the objects
(and their positions) for a given scene. Client viewer applica-
tions can make server requests only for the objects that are in
the client area of interest. Thus, if geometry can be delivered
from the server to the client ”just in time”, there is no need to
transfer the entire scene geometry to the client.

While not directly related to web-based 3D graphics, there
has been considerable research effort made into selective trans-
mission of the 3D data for online virtual worlds and Massive
Multiplayer Online (MMO) games, such as World of Warcraft
[104] and Eve Online [105]. Such systems feature dedicated
client-server systems which also employ Peer-to-Peer technol-
ogy for the transfer of 3D assets. For further information, we
direct the interested ready to a recent comprehensive survey pa-
per by Yahyavi [106].

5. Applications

Despite the clear growth of 3D graphics applications across
multiple platforms in the last two decades, the initial approaches
to bring this growth to the internet have either stalled or did
not gain traction [9]. In an attempt to research the reasons be-
hind this, Jankowski [107] surveyed the different tasks and ac-
tions carried out by users when viewing web pages, and also
when interacting with 3D content. The result is a taxonomy
of 3D web use, which demonstrates that there are very few
actions which are shared between what might be considered
’Web Tasks’ (e.g ’Click on Hyperlink’, ’Find on Page’) and
’3D tasks’ (’Spatial Navigation’, ’Object Selection’). This lack
of shared tasks leads to the conclusion that switching between
textual (hypertext) and spatial (3D graphics) spaces can be po-
tentially disorientating to the user, and any interface should take
this separation into account. This research eventually resulted
in [108], which presents a hybrid 2D/3D interface, designed to
avoid confusing the user.

Nevertheless, Mouton et al [77] argue that web applications
have major benefits with respect to desktop applications, for
two main reasons:

• Web browsers are available for all major platforms, in-
cluding mobile devices. This means that cross-platform
compatibility is almost guaranteed, and there is no need
to spend resources in developing for different platforms.

• Application deployment is much more straightforward,
as a web application typically does not require the user to
install or update any software or libraries (other than the
web browser).

These advantages, combined with a greater understanding
of how users interact with web-based 3D content [107], have
spurred application development in the field. In this section we
present an overview of the different application fields for 3D
web graphics, which we have grouped into different areas: data
visualisation and medical applications, digital content creation,
video games, e-learning, and engineering, architecture and cul-
tural heritage.

The overview does attempt to be exhaustive, but rather to
provide the reader with an understanding of the breadth and
depth of applications that have been, and are currently being,
developed using 3D web technology.

5.1. Data Visualisation and Medical Applications

3D graphics have long been used as a technique for data vi-
sualisation [109], and the introduction of a 3D context to the
web is now facilitating access to the field. A remote render-
ing example for visualizing scientific information already men-
tioned is ParaViewWeb [74]. Yet as Marion and Jomier point
out [110], a downside of many of these frameworks (from a web
point-of-view) is that many require a customised client setup,
either with plugins or external applications. Thus, [110] pro-
pose a system which uses Three.JS and WebSockets to counter
these issues. The WebSockets specification [111] introduces
a full-duplex socket connection created in Javascript, designed
to allow real-time synchronisation between multiple browsers.
Marion et al extend their work in [112] and compare a We-
bGL/WebSocket implementation of a molecular visualisation
with an identical ParaViewWeb scene; their results suggesting
better performance of the WebGL version. Other approaches
to visualisation of molecular structures are presented by Zollo
et al. [113], who use X3DOM to enable users to interact in
real-time with molecular models built in X3D, and molecular
visualisation in WebGL developed by Callieri et al [114] (see
Figure 6).

Limberger et al [115] use WebGL to visualise source code
repositories using software maps (see Figure 7), which link 3D
tree-maps, software system structure and performance indica-
tors, used in software engineering processes. Software map
visualisations typically feature large number of vertices, each
of which requires linking to several attributes in order to pre-
cisely control the visualisation. The authors thus propose a cus-
tomised structure for vertex arrays that allows rapid drawing of

12

Figure 6: Superposition of molecular structure and underlying atomic structure
in WebGL (reproduced with permission from [114])

Figure 7: WebGL used to visualise software maps from Web-based source code
repositories (reproduced with permission from [115])

geometry and avoids issues arising from WebGL current 16-bit
limitation for its vertex index buffers.

Medical science and education have also benefitted by in-
creasing accessibility to 3D software, through the 3D visualiza-
tion of medical data. According to [116], visualization tech-
niques in medicine fall in two main categories: surface extrac-
tion and volume rendering. The result of the surface represen-
tations, in both techniques, can be stored in a 3D format such
as X3D and then rendered in a web real-time fashion in by tak-
ing advantages of 3D web recent developments. Warrick and
Funnell [117] are the pioneers of using network technologies in
medical education, by rendering the surface of the anatomical
representation stored in a VRML file. In [118] animation ca-
pabilities in the form of rotational and slicing movements were
added to the learning modules. In addition, the authors tried
to address issues under low bandwidth through using lattices as
an extension for X3D, representing high quality surface shape
with minimal data. [119] propose an approach for modelling of
developmental anatomy and pathology that provides users with
a UI for a narrative showing different stages of anatomical de-

velopment. Moreover, the user is given some basic control such
as pause, rewind, and fast forward.

A new mobile learning tool [120] provides users with an in-
teractive 3D visualization of medical imaging to teach anatomy
and manual therapy. The authors implement a new volume ren-
dering method specialized for mobile devices that defines the
color of each pixel through a ray casting method. Jacinto et
al [121] bring the medical application field into the modern
HTML5/WebGL paradigm with an application that allows re-
altime visualisation and segmentation of medical images, using
a client-server approach. Data is processed using VTK [122]
on the server side, with segmentation of medical images being
converted into 3D surfaces and sent to the client to be rendered
using Three.JS. Mani and Li [123] present a surgical training
system built with X3D and WebGL, allowing real-time updates
from trainees and experienced surgeons. Congote et al. [124]
use WebGL for volume rendering of scientific data, using a ray-
casting method to visualise both medical data and meteorolog-
ical data.

5.2. Digital Content Creation

A clear application of web-based 3D is the creation, editing,
and revision of 3D assets which are destined for other applica-
tions or productions. There have been several academic efforts
at proposing and creating solutions for digital content creation
[125] [126], annotation [127] [128], and scene and programme
creation [37] [129]; yet with the continual success of digital ani-
mation and video game production, it is perhaps no surprise that
the commercial sector is a the forefront for using the 3D web in
a production environment. The digital production industry has
now become global involving many companies working on dif-
ferent aspects of a production from any place around the globe.
Modern digital production deals with 3D assets on a daily basis,
and there are now 3D applications on the web which are being
used to ease the production pipeline of these digital media.

One of the most important tasks for such production is cre-
ating tools that are able to properly access 3D assets, review
them and properly annotate any change. Such tools may be
applied to varying facets of the authoring process, such as mod-
eling, shading or even animation and lighting/rendering. The
success of such tools is encapsulated by Tweak Software’s RV
[130]. RV is a desktop offline tool that allows users to review
and annotate still frames, image sequences and 3D contents us-
ing OpenGL technology. As an industry tool it includes a fea-
ture that allows users to share the RV workspace through the
internet in order to collaborate on the same data and watch the
results of any change in real time even if in different places in
the world.

With the increased maturity of web-based technology for
creating advanced user interfaces, there are several web appli-
cations attempting to replicate RV’s success in a web-based en-
vironment. Sketchfab [131] is a web tool and community, de-
veloped with WebGL, for 3D modeling and texturing, and is
designed to allow 3D artists to share their creations seamlessly
via the web. Commonly, 3D models are showcased through pre-
rendered turnaround videos or still images but with tools like

13

Figure 8: Screenshot of the Sketchfab 3D web application [131]

the Sketchfab it is possible to share the results in a 3D web con-
text, so that the viewer can interact with the scene, rotating the
camera and even interacting with the content. Additional fea-
tures such as the ability to write comments and the possibility
to view the model in three different combined ways (wireframe,
shaded and textured) make it suitable for use as a review tool
for media production companies. It could be enhanced with a
sketching tool, allowing reviewers to rapidly add corrections or
notes, and to relate a comment to a particular part of the geom-
etry.

Clara.io [132] is an online tool (currently in Beta) for the
creation and sharing of 3D content. It features a suite of mod-
elling tools for mesh creation, and also allows key-frame ani-
mation and annotation of meshes for sharing and collaborative
creation.

Figure 9: Screenshot of the Lagoa 3D web application [133]

Lagoa [133] is a ”web based platform for photoreal 3D vi-
sualization and rendering” developed using WebGL. It offers
the possibility to work on 3D scenes through the web browser
in a collaborative way by creating workgroups and simultane-
ously interacting with the contents and commenting them with
other members. It enables users to upload assets directly from
their computer or access them from the cloud asset manager
that Lagoa offers. This asset manager is also based on work-
groups and allows users to see only the scenes they are permit-
ted to work on, partially mimicking the industry standard tool
for cloud asset management, Shotgun [134]. All the accessible
assets can be placed, moved around and previewed in 3D space.

The tool can also manage lights in real time for rapid develop-
ment of the scenes and includes a state-of-the-art photorealis-
tic rendering engine. The latter uses all the information pro-
vided by the users in the scene and makes all the computation
on servers provided by Lagoa itself. In this way, the user is not
bounded by computational constraints of his/her computer and
can render rapidly even on lower end hardware. The rendering
is performed using progressive refinement global illumination
algorithms that shows the user a gradually enhanced version
of the entire scene (opposite to standard renderers which show
image tiles only when completed). This permits creative users
(e.g. a lighting artist, or the director of photography) to start
commenting on the work even before rendering is finished.

3DTin [135] is a tool for rapid creation of simple 3D geome-
tries, which was recently purchased by Lagoa. Unfortunately,
the resulting mesh is very basic and too simple to be used in
general production, but the tool demonstrates that there is an
effort to work in this direction.

Autodesk, the leader in 3D authoring software development,
has also shown interest in developing 3D applications for the
web and is working on different solutions. 123Design [136] is
a modelling tool similar to 3DTin but, more than just creating
simple geometries out of primitives, it also allows users to im-
port their own models and modify them. It requires a plugin to
be installed and does not use WebGL. Despite Autodesk back-
ing, 123Design does not yet achieve the quality required for
general industry use. However, Autodesk has announced a plat-
form for hosting servers running their applications, allowing
users to connect and interact with the applications through an
internet connection. This solution would unleash all the power
of current high-end Autodesk products, together with the possi-
bilities of working on the cloud. Although this solution would
not involve direct rendering of 3D graphics on the web, it evi-
dence of the interest in building 3D applications for the indus-
try, running through the web and on the cloud.

5.3. Games

It is beyond doubt that video games have contributed to the
very cutting edge of computer graphics since their invention,
with several annual conferences (such as the Games Develop-
ers Conference) bringing together companies, researchers and
individuals in the field. Videogames are also indelibly associ-
ated with the web thanks to the ubiquity of Adobe Flash, which
has provided a platform for many 2D-based games. However,
the contribution of the games field to the 3D web is less ob-
vious, as many popular online games, such as World of War-
craft [104] or Eve Online [105] use custom, platform specific
clients. The rise of the free-to-play model has seen some efforts
to produce 3D games within the browser [55] [137]; there have
been some been open-source efforts to port older 3D games to
WebGL [138]; and Epic Games have created a demo of their
Unreal Engine working with WebGL [54]. Perhaps the greatest
breakthrough in the enabling of 3D gaming via the web so far
has been by Unity [52] [53], discussed in detail above. With
the rise of web-enabled 3D digital content creation tools (men-
tioned above), it is perhaps only a matter of time before more

14

commercial attention is paid to 3D games running natively in
the browser.

5.4. E-learning
It is acknowledged that students only fully absorb the learn-

ing material once they have applied it in practice; yet learning
through Virtual Reality (VR) provides a simulated learning ex-
perience [139] which attempts to enhance learning by joining
theory and practice. The application of 3D virtual platforms
on the web has become an increasingly popular research topic
since Wickens analyzed the advantages of learning in VR en-
vironment [140]. He stated that VR can be defined based on
five main concepts: 3D perspective, real-time rendering, closed
loop interaction, inside-out perspective, and enhanced sensory
feedback. At the same time, [141] assessed the merits and faults
of VR’s conceptual and technical future. Due to the special soft-
ware and hardware requirements of VR systems, the develop-
ment of these types of systems have a high cost associated with
them [142], while in the past few years, we have witnessed the
creation and proliferation of 3D virtual frameworks through the
web that can be used by lower end computers.

Initially, the growth of 3D multi-user virtual worlds (MUVE)
faced the challenge of motivating learners to utilize this kind of
3D capability to learn courses with greater precision. In light
of recent developments of web capabilities (as surveyed in this
paper), this particular type of e-learning has received a great
deal of attention as a compelling means of resolving traditional
teaching issues. One of the first attempts [143] in this area was
launched by Linden Labs with Second Life [144], originally
a 3D virtual world presented as an educational framework for
simulating social interactions. The programming language of
Second Life was Linden Scripting Language. However, this ap-
plication suffers from two main drawbacks: poor performance
due to network latency and the prohibition of sharing the con-
tent outside of the virtual environment. Later, OpenSim [145]
expanded on this concept, improving the quality of the learning
environment and making it free and open rather than propri-
etary. In addition, it allowed user-created content to be exported
in a portable format called OAR and shared within the commu-
nity. The advantages and disadvantages of these two systems
are specifically discussed in [146] [143]. Second Life has itself
become a platform for research, with several authors using it
as a base for e-learning research [147] [148]; and now it has a
web-based client, bringing it inline with the current trends for
browser-based 3D.

[149] analysed the application of Second Life as a 3D plat-
form on the web that offers potential as a tourism educational
tool by providing interactive experiences for students. In this
study, Self-Determination Theory (SDT) [150] [151] is applied
as a metric to recognise significant factors which influence stu-
dent learning motivations in 3D world on the web. The results
revealed that a positive emotional state had a positive and sig-
nificant impact on students’ intrinsic motivation when learning
in a 3D virtual world.

Di Cerbo et al [152] make specific efforts to integrate a 3D
web interface into an avatar-based e-learning platform. They
conclude that the addition of high-performance, plugin-free 3D

Figure 10: Screenshot of the Ruthwell Cross and associated narrative (repro-
duced with permission from [153]

graphics into their platform allowed a complete and meaning-
ful interaction with the e-learning services, benefitting the user
experience.

5.5. Geography, Architecture and Virtual Heritage

Geography and architecture are natural application fields of
3D technology, and this is reflected in related research in the
web context. Over et al. [154] provide a summary of efforts
made to use OpenStreetMap (OSM) data as a basis for creating
3D city models, which are then viewed in a web-based context.
Many of the developments in this field [155][156][157] create
and use 3D data stored in the CityGML format [158] an XML-
based open format and information model for the representation
of urban objects. 3DNSITE [159] streams large hybrid data
(georeferenced point clouds and photographs) to client hard-
ware, with the goal of assisting crisis managers and first respon-
ders to familiarise themselves with an environment either dur-
ing an emergency or for training purposes. Lamberti [160] use
web-based 3D to visualise real-world LED-based street light-
ing. Geographical Information Systems (GIS) (such as Google
Earth) are increasingly being augmented with 3D data [161],
and there have been several efforts to aid in the streaming and
visualisation of such data [162] [163].

The rise of Virtual Heritage (VH) represents the equiva-
lent rise in the ability of technology to digitise real 3D ob-
jects (in this case, of cultural value), and display them in a vir-
tual environment. Thus VH has been an important application
of internet based 3D graphics and has been since the days of
VRML [164] [165] [166]. Efforts at using modern, browser
based declarative 3D techniques in VH are presented in [167].
Manferdini and Remondino [128] outline a method to semanti-
cally segment 3D models in order to facilitate annotation, and
demonstrate the new possibilities with architectural and archae-
ological heritage structures. Callieri et al [153] demonstrate
how 3D visualisation for VH can be combined in a narrative
way with standard HTML to create narrative experiences and
provide greater understanding of the artwork or cultural object
in question (see Figure 10). Other modern efforts for web-based

15

virtual heritage have involved adaptation of systems specifically
for mobile contexts [168] [169].

Finally, Autodesk has recently worked in conjunction with
the Smithsonian Foundation to deliver the Smithsonian X 3D
[170], a WebGL virtual heritage tool for the online visualization
of 3D scans. It has many features common to 3D tools, such
as the choice between wireframe or shaded view, textures, and
advanced real time materials, but it also provides the possibility
to alter the lighting of the scene in a very direct and easy way
by defining light sources around the surface of a virtual dome.

6. Discussion

In 2010, Ortiz [26] stated that there were several major hur-
dles which needed to be overcome before ”the 3D web can truly
flower”:

• The requirement for web browsers to use plugins in or-
der to view and interact with 3D content; not only be-
cause plugin-installation is a barrier to installation, but
because plugins are prone to cause browser crashes and
other problems.

• The reliance on plugins also damages cross-platform com-
patibility and contributes to the inability of 3D to work
on all browsers and operating systems.

• The lack of standardisation may lead to the web becom-
ing a tangled mess of incompatible formats and technolo-
gies, forcing the developers to create multiple versions of
the same technology.

• The long authoring times for 3D content on the web are
a barrier to entry, both for web developers and end users.

• Proponents are not designing online 3D technology for
the average user (which, it is claimed, led to the per-
ceived failure of VRML)

• The rise in use of low-power devices means that running
3D content on the client side is increasingly difficult

Referring to the work surveyed in this paper, we can now
attempt to conclude whether any progress has been made on
any of these points, and whether any new issues have arisen.

Firstly, it is clear that the need to use plugins for web-based
3D content is now diminishing. The release of WebGL, now
supported by all major browsers, means that developers can ac-
cess graphics hardware acceleration via the browser, without
requiring the user to install a third party plugin. This flexibility
is reflected in the number of libraries which abstract and add
functionality to the core WebGL specification, chief of which
is Three.JS. The removal of plugins means that cross-platform
compatibility is also greatly enhanced. The only current re-
maining stumbling block to the general acceptance of WebGL is
the continuing reluctance of Apple to enable official support on
its Mobile Safari browser (the default browser on all the com-
panies internet capable mobile devices, such as the iPhone and

Keyword GitHub
stars

ACM Digital
Library

IEEEXplore

X3DOM (X3D) 143 (n/a) 71 (547) 9 (127)
Three.JS 13616 14 1

Table 2: Popularity of X3D and Three.JS in different online platforms. Github
is an online source code repository used for collaboratively creating software
projects, ’stars’ are can be given by users to a particular project (maximum one
star per project per registered user). The ACM and IEEE digital libraries are
databases of academic papers published in journals and affiliated conferences
for these two institutions.

iPad), despite clear evidence that the functionality is present (in
both hardware and software) [171].

Efforts towards a standard for web-based 3D graphics have
achieved mixed results. Table 2 summarises some very basic
statistics on the relative popularity of X3D/X3DOM (proposed
standard) and Three.JS (non-standard library built on the We-
bGL). Three comparison measures are used: (a) the number of
’stars’ (recommendations by users) the projects have received
on the popular GitHub online repository; and (b) and (c) the
number of returned hits for published papers when searching
on two major academic portals, the ACM Digital Library and
the IEEEXplore Digital Library respectively. While not rig-
orous in terms of assessment, they show a clear difference in
popularity between the academic community on one hand and
the wider development community on the other. The X3D stan-
dard, and its younger, browser-integrated cousin, X3DOM, are
featured in dozens of academic articles, whereas Three.JS is
barely mentioned in any. The Github stars show that Three.JS
is clearly much more popular among developers than X3DOM.
This presents a quandary for the standards community, as while
there has clearly been considerable research effort put into cre-
ating a standard for declarative 3D, most developer community
attention has been paid to an open source library which has
grown in a less formal way (not forgetting that both Three.JS
and X3DOM depend heavily on WebGL, itself a standard of
the Khronos group). The appearance of XML3D muddies the
water yet further for 3D web standards - while it shares many
of the overall goals of the declarative 3D paradigm favoured by
X3D/X3DOM, its existence somewhat undermines the latter’s
goal to become a web standard. Nevertheless, the community
is making efforts to tread carefully through this minefield, with
Jankowski et al [5] proposing a common PolyFill layer for all
declarative 3D approaches, and the development of interoper-
ability tools such as those by Berthelot et al. [172]. Through
this open dialogue and collaboration, then, there is hope that
Ortiz’ [26] ”tangled mess of standards” can yet be avoided.

Our survey on Digital Content Creation for the 3D web (see
Section 5.2) has demonstrated that there is now real effort into
the task of democratising the creation of 3D content. Both from
academic field (see Figure 11) and the commercial fields, there
are now several tools and interfaces that are bringing the power
of 3D content and scene creation within a web context, par-
tially removing the need for installation of large and/or expen-
sive desktop software (though we have yet to see the release of
a fully-featured 3D modelling tool).

16

Figure 11: WebGLStudio is an example of how web 3D tools are being used
to democratise the process of 3D scene creation (reproduced with permission
from [37])

It is clear that the rise of low-power devices, such as mobiles
phones and tablets, is not presenting a large barrier to adoption
of the 3D web. Modern mobile devices can execute 3D content
in the browser, and Section 3 references several efforts made to
offset the downsides of a mobile context, particularly regarding
processing power and bandwidth consumption.

Our general conclusion from this survey is that the world of
web-based 3D graphics is vibrant and exciting, both in the aca-
demic and wider developer communities. Each passing year
brings further developments which are shared online, in the
general academic press and conferences, and in specific gath-
erings such as the International Conference on 3D Web Tech-
nology, which in 2013 was staged for the 18th time.

Acknowledgements

The authors would like to acknowledge the support of the
IMPART Project, funded by the ICT - 7th Framework Program
from the European Commission (http://impart.upf.edu).

References

[1] Schatz BR, Hardin JB. NCSA Mosaic and the World Wide Web:
Global Hypermedia Protocols for the Internet. Science (New York, NY)
1994;265(5174):895–901.

[2] Curtis H. Flash Web Design: The Art of Motion Graphics. New Riders
Publishing; 2000. ISBN 0735708967.

[3] Nielsen J. Designing Web Usability. New Riders; 1999. ISBN
156205810X.

[4] W3C . HTML5 Specification. 2009. URL:
http://www.w3.org/TR/html5/.

[5] Jankowski J, Ressler S, Jung Y, Behr J, Slusallek P. Declarative Integra-
tion of Interactive 3D Graphics into the World-Wide Web: Principles,
Current Approaches, and Research Agenda. In: Proceedings 18th In-
ternational Conference on 3D Web Technology (Web3D’13). 2013, p.
39–45.

[6] W3C . Scalable Vector Graphics. 2001. URL:
http://www.w3.org/Graphics/SVG/.

[7] Geroimenko V, Chen C. Visualizing Information Using SVG and X3D.
Springer; 2004. ISBN 1852337907.

[8] Web3D . X3D. 2013. URL:
http://www.web3d.org/x3d/specifications/

x3d specification.html.

[9] Behr J, Eschler P, Jung Y, Zöllner M. X3DOM: a DOM-based
HTML5/X3D integration model. Proceedings of the 14th International
Conference on 3D Web Technology 2009;:127–36.

[10] W3C . Namespaces in XML. 1998. URL:
http://www.w3.org/TR/REC-xml-names/.

[11] Behr J, Jung Y, Keil J, Drevensek T. A scalable architecture for
the HTML5/X3D integration model X3DOM. In: Proceedings of
the 15th International Conference on 3D Web Technology. ISBN
9781450302098; 2010, p. 185–94.

[12] Microsoft . WebGL. 2013. URL:
http://msdn.microsoft.com/en-us/library/ie/

bg182648%2528v=vs.85%2529.aspx.
[13] Schwenk K, Jung Y, Behr J, Fellner DW. A modern declarative surface

shader for X3D. In: Proceedings of the 15th International Conference
on Web 3D Technology - Web3D ’10. 2010, p. 7.

[14] Schwenk K, Jung Y, Voß G, Sturm T, Behr J. CommonSurfaceShader
revisited: improvements and experiences. In: Proceedings of the 17th
International Conference on 3D Web Technology. ISBN 1450314325;
2012, p. 93–6.

[15] Behr J, Jung Y, Drevensek T, Aderhold A. Dynamic and interactive as-
pects of X3DOM. In: Proceedings of the 16th International Conference
on 3D Web Technology - Web3D ’11. 2011, p. 81.

[16] Sons K, Klein F, Rubinstein D, Byelozyorov S, Slusallek P. XML3D.
In: Proceedings of the 15th International Conference on Web 3D Tech-
nology - Web3D ’10. 2010, p. 175.

[17] Klein F, Sons K, Rubinstein D, Slusallek P. XML3D and
Xflow: Combining Declarative 3D for the Web with Generic Data
Flows. IEEE Computer Graphics and Applications 2013;33(5):38–47.
doi:10.1109/MCG.2013.67.

[18] W3C . CSS 3D Transforms. 2012. URL:
http://www.w3.org/TR/css3-transforms/.

[19] W3C . CSS Transitions. 2009. URL:
http://www.w3.org/TR/css3-transitions/.

[20] Arnaud R, Barnes M. COLLADA: sailing the gulf of 3D digi-
tal content creation. CRC Press; 2006. ISBN 1568812876. URL:
http://www.lavoisier.fr/livre/notice.asp?ouvrage=1828050.

[21] Khronos . glTF. 2013.
[22] Parisi T. WebGL: Up and Running. O’Reilly Media; 2012. ISBN

144932357X.
[23] Evans A, Agenjo J, Abadia J, Balaguer M, Romeo M, Pacheco D, et al.

Combining educational MMO games with real sporting events. 2011.
[24] Tautenhahn L. SVG-VML-3D. 2002. URL:

http://www.lutanho.net/svgvml3d/.
[25] Google . O3D. 2008. URL: https://code.google.com/p/o3d/.
[26] Ortiz Jr. S. Is 3D Finally Ready for the Web? Computer 2010;43(1):14–

6.
[27] Sánchez JR, Oyarzun D, Dı́az R. Study of 3D web technologies for

industrial applications. In: Proceedings of the 17th International Con-
ference on 3D Web Technology - Web3D ’12. 2012, p. 184.

[28] C3DL . Canvas 3D JS. 2008. URL: http://www.c3dl.org/.
[29] Leung C, Salga A, Smith A. Canvas 3D JS library. In: Proceedings of

the 2008 Conference on Future Play Research, Play, Share - Future Play
’08. ISBN 9781605582184; 2008, p. 274.

[30] Johansson T. Taking the canvas to another dimension. 2008.
URL: http://my.opera.com/timjoh/blog/2007/11/13/

taking-the-canvas-to-another-dimension.
[31] Khronos . WebGL Specification. 2011. URL:

http://www.khronos.org/registry/webgl/specs/latest/1.0/.
[32] Khronos . WebGL Demo Repository. 2013. URL:

http://www.khronos.org/webgl/wiki/Demo Repository.
[33] Cantor D, Jones B. WebGL Beginner’s Guide. Packt Publishing; 2012.

ISBN 184969172X.
[34] Matsuda K, Lea R. WebGL Programming Guide: Interactive 3D Graph-

ics Programming with WebGL (OpenGL). Addison-Wesley Profes-
sional; 2013. ISBN 0321902920.

[35] Di Benedetto M, Ponchio F, Ganovelli F, Scopigno R. SpiderGL.
In: Proceedings of the 15th International Conference on Web 3D
Technology - Web3D ’10. ISBN 9781450302098; 2010, p. 165.
doi:10.1145/1836049.1836075.

[36] Di Benedetto M, Ganovelli F, Banterle F. Features and Design Choices
in SpiderGL. In: Cozzi P, Riccio C, editors. OpenGL Insights. CRC

17

Press. ISBN 978-1439893760; 2012, p. 583–604.
[37] Agenjo J, Evans A, Blat J. WebGLStudio. In: Proceedings of the 18th

International Conference on 3D Web Technology - Web3D ’13. ISBN
9781450321334; 2013, p. 79.

[38] GlMatrix . glMatrix v2.2.0. 2013. URL: http://glmatrix.net/.
[39] Pinson C. OSG.JS. 2013. URL: http://osgjs.org/.
[40] Osfield R, Burns D. Open scene graph. 2004. URL:

http://www.openscenegraph.org/.
[41] Kay L. Scene.js. 2010. URL: http://www.scenejs.org/.
[42] Belmonte N. PhiloGL. 2013. URL:

http://www.senchalabs.org/philogl/.
[43] Brunt P. GLGE.org. 2010. URL: http://www.glge.org/.
[44] Cabello R. Three.JS. 2010. URL: http://threejs.org/.
[45] Dirksen J. Learning Three.js: The JavaScript 3D Library for WebGL.

Packt Publishing; 2013. ISBN 1782166289.
[46] Degrees P. Car Visualizer. 2013. URL:

http://carvisualizer.plus360degrees.com/threejs/.
[47] Adobe . Stage 3D. 2011. URL:

http://www.adobe.com/devnet/flashplayer/stage3d.html.
[48] Boese ES. An Introduction to Programming with Java Applets. Jones &

Bartlett Learning; 2009. ISBN 0763754609.
[49] Oracle . Java3D. 2008. URL: https://java3d.java.net/.
[50] JogAmp . JogAmp. 2013. URL: http://jogamp.org/.
[51] LWJGL . LWJGL - Lightweight Java Game Library. 2013. URL:

http://lwjgl.org/.
[52] Unity . Unity3D. 2013. URL: http://www.unity3d.com.
[53] Unity . Web Player Statistics. 2013.
[54] Epic Games . Unreal Engine. 2013. URL:

http://www.unrealengine.com/html5/.
[55] DICE . Battlefield Heroes. 2013. URL:

http://www.battlefieldheroes.com/.
[56] OnLive . OnLive. 2013. URL: http://www.onlive.com/.
[57] Gaikai . Gaikai. 2013. URL: http://www.gaikai.com.
[58] Engadget . Sony buys Gaikai cloud gam-

ing service for $380 million. 2012. URL:
http://www.engadget.com/2012/07/02/sony-buys-gaikai/.

[59] Humphreys G, Eldridge M, Buck I, Stoll G. WireGL: a scalable graphics
system for clusters. Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (SIGRAPH) 2001;:129–40.

[60] Glander T, Moreno A, Aristizabal M, Congote J, Posada J, Garcia-
Alonso A, et al. ReWeb3D. In: Proceedings of the 18th International
Conference on 3D Web Technology - Web3D ’13. 2013, p. 147.

[61] Emscripten . Emscripten. 2014. URL: http://emscripten.org.
[62] Lamberti F, Zunino C, Sanna A, Fiume A, Maniezzo M. An accelerated

remote graphics architecture for PDAS. In: Proceeding of the eighth in-
ternational conference on 3D web technology - Web3D ’03. 2003, p. 55.

[63] Noimark Y, Cohen-Or D. Streaming scenes to MPEG-4 video-enabled
devices. Computer Graphics and Applications, . . . 2003;.

[64] Tizon N, Moreno C, Cernea M, Preda M. MPEG-4-based adaptive re-
mote rendering for video games. In: Proceedings of the 16th Interna-
tional Conference on 3D Web Technology - Web3D ’11. 2011, p. 45.

[65] Richardson T, Stafford-Fraser Q, Wood KR, Hopper A. Virtual network
computing. Internet Computing, IEEE 1998;2(1):33–8.

[66] Levoy M. Polygon-assisted JPEG and MPEG compression of synthetic
images. In: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques - SIGGRAPH ’95. s; 1995, p. 21–8.

[67] Mann Y, CohenOr D. Selective pixel transmission for navigating in
remote virtual environments. Computer Graphics Forum 1997;.

[68] Fechteler P, Eisert P. Depth map enhanced macroblock partitioning for
H. 264 video coding of computer graphics content. In: Image Pro-
cessing (ICIP), 2009 16th IEEE International Conference on. ISBN
1424456533; 2009, p. 3441–4.

[69] Diepstraten J, Gorke M, Ertl T. Remote line rendering for mobile de-
vices. In: Computer Graphics International. 2004, p. 454–61.

[70] Quillet JC, Thomas G, Granier X, Guitton P, Marvie JE. Using expres-
sive rendering for remote visualization of large city models. In: Pro-
ceedings of the eleventh international conference on 3D web technology
- Web3D ’06. 2006, p. 27.

[71] Yoon I, Neumann U. Web-Based Remote Rendering with IBRAC
(Image-Based Rendering Acceleration and Compression). Computer
Graphics Forum 2000;19(3):321–30.

[72] Jurgelionis A, Fechteler P, Eisert P, Bellotti F, David H, Laulajainen
JP, et al. Platform for Distributed 3D Gaming. International Journal of
Computer Games Technology 2009;2009:1–15.

[73] Squillacote A. The Paraview Guide. Kitware, Inc.; 2008. ISBN
1930934211.

[74] Jourdain S, Ayachit U, Geveci B. Paraviewweb, a web framework for 3d
visualization and data processing. In: IADIS International Conference
on Web Virtual Reality and Three-Dimensional Worlds; vol. 7. 2010,
p. 1.

[75] Grimstead IJ, Avis NJ, Walker DW. RAVE: the resourceaware visual-
ization environment. Concurrency and Computation: Practice and Ex-
perience 2009;21(4):415–48.

[76] Jourdain S, Forest J, Mouton C, Nouailhas B, Moniot G, Kolb F, et al.
ShareX3D, a scientific collaborative 3D viewer over HTTP. In: Pro-
ceedings of the 13th international symposium on 3D web technology.
ISBN 1605582131; 2008, p. 35–41.

[77] Mouton C, Sons K, Grimstead I. Collaborative visualization: current
systems and future trends. In: Proceedings of the 16th International
Conference on 3D Web Technology. ACM. ISBN 1450307744; 2011, p.
101–10.

[78] Peng J, Kim C, Kuo CJ. Technologies for 3D mesh compression: A
survey. Journal of Visual Communication and Image . . . 2005;.

[79] Alliez P, Gotsman C. Recent advances in compression of 3D meshes. In:
Advances in Multiresolution for Geometric Modelling. Springer Berlin
Heidelberg. ISBN 978-3-540-21462-5; 2005, p. 3–26.

[80] Shamir A. A survey on mesh segmentation techniques. Computer graph-
ics forum 2008;27(6):1539–56.

[81] Limper M, Wagner S, Stein C, Jung Y, Stork A. Fast delivery of 3D
web content: a case study. In: Proceedings of the 18th International
Conference on 3D Web Technology. ISBN 145032133X; 2013, p. 11–7.

[82] Hoppe H. Progressive meshes. Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques SIGGRAPH
1996;:99–108.

[83] Hoppe H. Efficient implementation of progressive meshes. Computers
& Graphics 1998;22(1):27–36.

[84] Maglo A, Courbet C, Alliez P, Hudelot C. Progressive compression of
manifold polygon meshes. Computers & Graphics 2012;36(5):349–59.

[85] Lavoué G, Chevalier L, Dupont F. Streaming Compressed 3D Data on
the Web using JavaScript and WebGL. In: ACM International Confer-
ence on 3D Web Technology (Web3D), San Sebastian, Spain. 2013, p.
19–27.

[86] Valette S, Chaine R, Prost R. Progressive lossless mesh compres-
sion via incremental parametric refinement. Computer Graphics Forum
2009;28(5):1301–10.

[87] Charland A, Leroux B. Mobile application development: web vs. native.
Communications of the ACM 2011;54(5):49–53.

[88] Tian D, AlRegib G. Batex3: Bit allocation for progressive transmission
of textured 3-d models. Circuits and Systems for Video Technology,
IEEE Transactions on 2008;18(1):23–35.

[89] King D, Rossignac J. Optimal bit allocation in compressed 3D models.
Computational Geometry 1999;14(1):91–118.

[90] Payan F, Antonini M. An efficient bit allocation for compressing normal
meshes with an error-driven quantization. Computer Aided Geometric
Design 2005;22(5):466–86.

[91] Lee H, Lavoué G, Dupont F. Rate-distortion optimization for progres-
sive compression of 3D mesh with color attributes. The Visual Computer
2012;28(2):137–53.

[92] Ahn JH, Kim CS, Ho YS. Predictive compression of geometry, color
and normal data of 3-D mesh models. Circuits and Systems for Video
Technology, IEEE Transactions on 2006;16(2):291–9.

[93] Yoon YS, Kim SY, Ho YS. Color data coding for three-dimensional
mesh models considering connectivity and geometry information. In:
Multimedia and Expo, 2006 IEEE International Conference on. IEEE;
2006, p. 253–6.

[94] Cirio G, Lavoué G, Dupont F. A Framework for Data-driven Progressive
Mesh Compression. In: GRAPP. 2010, p. 5–12.

[95] Alliez P, Desbrun M. Progressive compression for lossless transmis-
sion of triangle meshes. In: Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques. ACM. ISBN
158113374X; 2001, p. 195–202.

[96] Gobbetti E, Marton F. Adaptive quad patches: an adaptive regular struc-

18

ture for web distribution and adaptive rendering of 3D models. In: Pro-
ceedings of the 17th International Conference on 3D Web Technology.
2012, p. 9–16.

[97] Limper M, Jung Y, Behr J, Alexa M. The POP Buffer: Rapid Progres-
sive Clustering by Geometry Quantization. Computer Graphics Forum
2013;32(7):197–206.

[98] Behr J, Jung Y, Franke T, Sturm T. Using images and explicit binary
container for efficient and incremental delivery of declarative 3D scenes
on the web. In: Proceedings of the 17th International Conference on 3D
Web Technology. 2012, p. 17–26.

[99] Geelnard M. OpenCTM, the Open Compressed Triangle Mesh file for-
mat. 2010. URL: http://openctm.sourceforge.net/.

[100] Blume A, Chun W, Kogan D, Kokkevis V, Weber N, Petterson RW, et al.
Google body: 3d human anatomy in the browser. In: ACM SIGGRAPH
2011 Talks. ACM. ISBN 1450309747; 2011, p. 19.

[101] Chun W. WebGL models: End-to-End. In: Cozzi P, Riccio C, editors.
OpenGL Insights. CRC Press. ISBN 1439893764; 2012, p. 431–52.

[102] Schmalstieg D, Gervautz M. DemandDriven Geometry Transmis-
sion for Distributed Virtual Environments. Computer Graphics Forum
1996;15(3):421–32.

[103] Hesina G, Schmalstieg D. A network architecture for remote rendering.
In: Proceedings. 2nd International Workshop on Distributed Interactive
Simulation and Real-Time Applications (Cat. No.98EX191). 1998, p.
88–91.

[104] Blizzard . World of Warcraft. 2013. URL:
http://www.worldofwarcraft.com/.

[105] CCP . Eve Online. 2013. URL: http://www.eveonline.com/.
[106] Yahyavi A, Kemme B. Peer-to-peer architectures for massively

multiplayer online games: A survey. ACM Computing Surveys
2013;1:8022980.

[107] Jankowski J, Hachet M. A Survey of Interaction Techniques for Interac-
tive 3D Environments. In: Eurographics 2013-State of the Art Reports.
ISBN 1017-4656; 2012, p. 65–93.

[108] Jankowski J, Decker S. A dual-mode user interface for accessing 3D
content on the world wide web. In: Proceedings of the 21st international
conference on World Wide Web - WWW ’12. 2012, p. 1047.

[109] Weiskopf D. GPU-Based Interactive Visualization Techniques (Mathe-
matics and Visualization). Springer; 2006. ISBN 3540332626.

[110] Marion C, Jomier J. Real-time collaborative scientific WebGL visualiza-
tion with WebSocket. Proceedings of the 17th International Conference
on 3D Web Technology 2012;:47–50.

[111] W3C . Websocket Specification. 2009. URL:
http://www.w3.org/TR/websockets/.

[112] Marion C, Pouderoux J, Jomier J, Jourdain S, Hanwell M, Ayachit
U. A Hybrid Visualization System for Molecular Models. In: Pro-
ceedings of the 18th International Conference on 3D Web Technol-
ogy. Web3D ’13; ACM. ISBN 978-1-4503-2133-4; 2013, p. 117–20.
doi:10.1145/2466533.2466558.

[113] Zollo F, Caprini L, Gervasi O, Costantini A. X3DMMS. In: Proceedings
of the 16th International Conference on 3D Web Technology - Web3D
’11. ISBN 9781450307741; 2011, p. 129.

[114] Callieri M, Andrei RM, Di Benedetto M, Zoppè M, Scopigno R. Visu-
alization methods for molecular studies on the web platform. In: Pro-
ceedings of the 15th International Conference on Web 3D Technology -
Web3D ’10. 2010, p. 117.

[115] Limberger D, Tr J. Interactive Software Maps for Web-Based Source
Code Analysis. In: Proceedings 18th International Conference on 3D
Web Technology. ISBN 9781450321334; 2013, p. 91–8.

[116] John NW. The impact of Web3D technologies on medical education and
training. Computers & Education 2007;49(1):19–31.

[117] Warrick PA, Funnell WRJ. A VRML-based anatomical visualization
tool for medical education. Information Technology in Biomedicine,
IEEE Transactions on 1998;2(2):55–61.

[118] Wakita A, Hayashi T, Kanai T, Chiyokura H. Using lattice for web-
based medical applications. In: Proceedings of the sixth international
conference on 3D Web technology. ISBN 1581133391; 2001, p. 29–34.

[119] Brenton H, Hernandez J, Bello F, Strutton P, Firth T, Darzi A. Web
based delivery of 3D developmental anatomy. In: Proceedings of the
LET-WEB3D 2004 workshop on Web3D technologies. 2004, p. 53–7.

[120] Noguera JM, Jiménez JJ, Osuna-Pérez MC. Development and evalua-
tion of a 3D mobile application for learning manual therapy in the phys-

iotherapy laboratory. Computers & Education 2013;69:96–108.
[121] Jacinto H, Kéchichian R, Desvignes M, Prost R, Valette S. A Web In-

terface for 3D Visualization and Interactive Segmentation of Medical
Images. In: Proceedings of the 17th International Conference on 3D
Web Technology. Web3D ’12. ISBN 978-1-4503-1432-9; 2012, p. 51–
8. doi:10.1145/2338714.2338722.

[122] Schroeder W, Martin K, Lorensen B. Visualization Toolkit: An Object-
Oriented Approach to 3D Graphics, 4th Edition. Kitware; 2006. ISBN
193093419X.

[123] Mani G, Li W. 3D web based surgical training through comparative
analysis. In: Proceedings of the 18th International Conference on 3D
Web Technology - Web3D ’13. 2013, p. 83.

[124] Congote J, Segura A, Kabongo L, Moreno A, Posada J, Ruiz O. In-
teractive visualization of volumetric data with WebGL in real-time. In:
Proceedings of the 16th International Conference on 3D Web Technol-
ogy - Web3D ’11. 2011, p. 137.

[125] Doboš J, Steed A. 3D Revision Control Framework. In: Proceedings of
the 17th International Conference on 3D Web Technology. Web3D ’12;
New York, NY, USA: ACM. ISBN 978-1-4503-1432-9; 2012, p. 121–9.

[126] Ulbrich C, Lehmann C. A DCC pipeline for native 3D graphics in
browsers. In: Proceedings of the 17th International Conference on 3D
Web Technology - Web3D ’12. ACM. ISBN 9781450314329; 2012, p.
175. doi:10.1145/2338714.2338744.

[127] Lehmann C. Annotating 3D Content in Interactive , Virtual Worlds.
In: Proceedings 18th International Conference on 3D Web Technology.
ISBN 9781450321334; 2013, p. 67–70.

[128] Manferdini AM, Remondino F. Reality-based 3D modeling, segmenta-
tion and web-based visualization. In: Digital Heritage. Springer. ISBN
3642168728; 2010, p. 110–24.

[129] Abadia J, Evans A, Gonzales E, Gonzales S, Soto D, Fort S,
et al. Assisted animated production creation and programme
generation. In: Proceedings of the International Conference
on Advances in Computer Enterntainment Technology ACE
09. ACM Press. ISBN 9781605588643; 2009, p. 207. URL:
http://portal.acm.org/citation.cfm?doid=1690388.1690423.
doi:10.1145/1690388.1690423.

[130] Tweak Software . RV. 2013. URL:
http://www.tweaksoftware.com.

[131] SketchFab . SketchFab. 2013. URL: http://sketchfab.com/.
[132] Exocortex . Clara.io. 2013. URL: http://clara.io/.
[133] TeamUp Technologies . Lagoa. 2013. URL:

http://home.lagoa.com/.
[134] Shotgun Software . Shotgun. 2013. URL:

http://www.shotgunsoftware.com/.
[135] TeamUp Technologies . 3DTin. 2013. URL:

http://www.3dtin.com/.
[136] Autodesk . 123Design. 2013. URL:

http://www.123dapp.com/design.
[137] Id Software . Quake Live. 2007.
[138] Cromwell R, Webber J. Quake 2 HTML5 Port. 2010. URL:

https://code.google.com/p/quake2-gwt-port/.
[139] Herrington J, Oliver R. Critical characteristics of situated learning: Im-

plications for the instructional design of multimedia. In: Proceeding
ASCILITE 1995. 1995, p. 253–62.

[140] Wickens CD. Virtual reality and education. In: IEEE International Con-
ference on Systems, Man and Cybernetics. IEEE. ISBN 0780307208;
1992, p. 842–7.

[141] Helsel S. Virtual Reality and Education. Educational Technology
1992;32(5):38–42.

[142] Chittaro L, Ranon R. Web3D technologies in learning, education and
training: Motivations, issues, opportunities. Computers & Education
2007;49(1):3–18.

[143] Allison C, Miller A, Oliver I, Michaelson R, Tiropanis T. The Web in
education. Computer Networks 2012;56(18):3811–24.

[144] Linden Labs . Second Life. 2003. URL:
http://www.secondlife.com.

[145] OpenSimulator . OpenSim. 2013. URL:
http://opensimulator.org.

[146] Allison C, Miller A, Sturgeon T, Nicoll JR, Perera I. Educationally
enhanced virtual worlds. In: Frontiers in Education Conference (FIE),
2010 IEEE. IEEE. ISBN 1424462614; 2010, p. T4F–1.

19

[147] De Lucia A, Francese R, Passero I, Tortora G. Development and
evaluation of a system enhancing Second Life to support synchronous
rolebased collaborative learning. Software: Practice and Experience
2009;39(12):1025–54.

[148] Zhang Q, Marksbury N, Heim S. A case study of communication
and social interactions in learning in second life. In: System Sciences
(HICSS), 2010 43rd Hawaii International Conference on. IEEE. ISBN
142445509X; 2010, p. 1–9.

[149] Huang YC, Backman SJ, Chang LL, Backman KF, McGuire FA. Ex-
periencing student learning and tourism training in a 3D virtual world:
An exploratory study. Journal of Hospitality, Leisure, Sport & Tourism
Education 2013;13:190–201.

[150] Deci EL, Ryan RM. SelfDetermination. Wiley Online Library; 1985.
ISBN 0470479213.

[151] Ryan RM, Deci EL. Self-determination theory and the facilitation of in-
trinsic motivation, social development, and well-being. American psy-
chologist 2000;55(1):68.

[152] Di Cerbo F, Dodero G, Papaleo L. Integrating a Web3D interface into
an e-learning platform. In: Proceedings of the 15th International Con-
ference on Web 3D Technology - Web3D ’10. ISBN 9781450302098;
2010, p. 83.

[153] Callieri M, Leoni C, Dellepiane M, Scopigno R. Artworks narrating
a story: a modular framework for the integrated presentation of three-
dimensional and textual contents. In: ACM WEB3D - 18th International
Conference on 3D Web Technology. ACM; ACM; 2013, p. 167–75.

[154] Over M, Schilling A, Neubauer S, Zipf A. Generating web-based 3D
City Models from OpenStreetMap: The current situation in Germany.
Computers, Environment and Urban Systems 2010;34(6):496–507.

[155] Rainer J, Goetz M. Towards Interactive 3D City Models on the Web.
International Journal of 3D Information Modelling 2012;1(3).

[156] Christen M, Nebiker S, Loesch B. Web-Based Large-Scale 3D-
Geovisualisation Using WebGL: The OpenWebGlobe Project. Interna-
tional Journal of 3-D Information Modeling (IJ3DIM) 2012;1(3):16–25.

[157] Gesquière G, Manin A. 3D Visualization of Urban Data Based on
CityGML with WebGL. International Journal of 3-D Information Mod-
eling (IJ3DIM) 2012;1(3):1–15.

[158] Kolbe T, Gröger G, Plümer L. CityGML: Interoperable Access to 3D
City Models. In: Oosterom P, Zlatanova S, Fendel E, editors. Geo-
information for Disaster Management SE - 63. Springer Berlin Heidel-
berg. ISBN 978-3-540-24988-7; 2005, p. 883–99.

[159] Pintore G, Gobbetti E, Ganovelli F, Brivio P. 3DNSITE: A networked
interactive 3D visualization system to simplify location awareness in cri-
sis management. In: Proceedings of the 17th International Conference
on 3D Web Technology. ISBN 1450314325; 2012, p. 59–67.

[160] Lamberti F, Sanna A, Henao Ramirez EA. Web-based 3D visualization
for intelligent street lighting. In: Proceedings of the 16th International
Conference on 3D Web Technology. ISBN 1450307744; 2011, p. 151–4.

[161] Rakkolainen I, Vainio T. A 3D city info for mobile users. Computers &
Graphics 2001;25(4):619–25.

[162] Cellier F, Gandoin PM, Chaine R, Barbier-Accary A, Akkouche S. Sim-
plification and streaming of GIS terrain for web clients. In: Proceed-
ings of the 17th International Conference on 3D Web Technology. ACM.
ISBN 1450314325; 2012, p. 73–81.

[163] Prieto In, Izkara JL. Visualization of 3D city models on mobile devices.
In: Proceedings of the 17th International Conference on 3D Web Tech-
nology. ISBN 1450314325; 2012, p. 101–4.

[164] Walczak K, Cellary W, White M. Virtual museum exbibitions. Com-
puter 2006;39(3):93–5.

[165] Patel M, White M, Walczak K, Sayd P. Digitisation to Presentation:
Building Virtual Museum Exhibitions. Vision, Video and Graphics 2003
2003;.

[166] Wojciechowski R, Walczak K, White M, Cellary W. Building virtual
and augmented reality museum exhibitions. In: Proceedings of the ninth
international conference on 3D Web technology. ISBN 1581138458;
2004, p. 135–44.

[167] Jung Y, Behr J, Graf H. X3DOM as Carrier of the Virtual Heritage. In:
International Society for Photogrammetry and Remote Sensing (ISPRS),
Proceedings of the 4th ISPRS International Workshop 3D-ARCH. 2011,
p. 475–82.

[168] Michaelis N, Jung Y, Behr J. Virtual Heritage to Go. In: Proceedings of
the 17th International Conference on 3D Web Technology. Web3D ’12;

ACM. ISBN 978-1-4503-1432-9; 2012, p. 113–6.
[169] Rodrı́guez MB, Gobbetti E, Marton F, Tinti A. Compression-domain

seamless multiresolution visualization of gigantic triangle meshes on
mobile devices. In: Proceedings of the 18th International Conference
on 3D Web Technology - Web3D ’13. ACM Press; 2013, p. 99.

[170] SmithsonianX3D . Smithsonian X 3D. 2013. URL:
http://3d.si.edu/.

[171] Benin A, Leone GR, Cosi P. A 3D talking head for mobile devices based
on unofficial iOS WebGL support. In: Proceedings of the 17th Interna-
tional Conference on 3D Web Technology. ACM. ISBN 1450314325;
2012, p. 117–20.

[172] Berthelot RB, Royan J, Duval T, Arnaldi B. Scene graph adapter. In:
Proceedings of the 16th International Conference on 3D Web Technol-
ogy - Web3D ’11. New York, New York, USA: ACM Press; 2011, p. 21.

20

