
WEB-BASED VISUALISATION OF ON-SET POINT CLOUD
DATA

Alun Evans
∗

Interactive Tecnologies Group
Universitat Pompeu Fabra

138 Roc Boronat, Barcelona,
08018, Spain

alun.evans@upf.edu

Javi Agenjo
Interactive Tecnologies Group

Universitat Pompeu Fabra
138 Roc Boronat, Barcelona,

08018, Spain
javi.agenjo@upf.edu

Josep Blat
†

Interactive Tecnologies Group
Universitat Pompeu Fabra

138 Roc Boronat, Barcelona,
08018, Spain

josep.blat@upf.edu

ABSTRACT
In this paper we present a system for progressive encoding, stor-
age, transmission, and web based visualization of large point cloud
datasets. Point cloud data is typically recorded on-set during a
film production, and is later used to assist with various stages of
the post-production process. The remote visualization of this data
(on or off-set, either via desktop or mobile device) can be diffi-
cult, as the volume of data can take a long time to be transferred,
and can easily overwhelm the memory of a typical 3D web or mo-
bile client. Yet web-based visualization of this data opens up many
possibilities for remote and collaborative workflow models. In or-
der to facilitate this workflow, we present a system to progressively
transfer point cloud data to a WebGL based client, updating the
visualisation as more information is downloaded and maintaining
a coherent structure at lower resolutions. Existing work on pro-
gressive transfer of 3D assets has focused on well-formed triangle
meshes, and thus is unsuitable for use with raw LIDAR data. Our
work addresses this challenge directly, and as such the principal
contribution is that it is the first published method of progressive
visualization of point cloud data via the web.

Categories and Subject Descriptors
I.3.4 [Computer Graphics]: Graphics Utilities; I.3.4 [Computer
Graphics]: Computational Geometry and Object Modeling

Keywords
Visualisation, 3D, pointcloud, progressive, WebGL.

1. INTRODUCTION
Point clouds are frequently used to represent 3D surface data ex-
tracted using acquisition techniques such as laser range scans. For
example, Light Detection and Ranging (LIDAR) is a remote sens-
ing technique that uses the time difference between the transmis-

∗Corresponding author
†http://gti.upf.edu
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CVMP’14 13-14 November 2014, London, United Kingdom
Copyright 2014 ACM 978-1-4503-3185-2/14/11 ...$15.00.
http://dx.doi.org/10.1145/2668904.2668937.

sion of a laser pulse and the detection of its reflection to calculate
the position of observed point on the surface of an object. The in-
formation gathered from the pulses is then amalgamated and con-
verted into a topological cloud of points in 3D space, which can
be stored on disk in one of several formats (for example, LAS or
OFF). Modern film production methods are now recording data in
several different modalities, in order to assist and speed up the post-
production process. The use of LIDAR scanning on-set is one ex-
ample of this. LIDAR machines will be set up on-set to record
the filming environment, which can then be viewed later to assist
in post-production, whether as a visual aid to assist in the creation
and/or lighting of digital assets, or a ground truth to assess regis-
tration techniques involving multiple cameras, or simply to provide
better context of the set to the post-production staff. In parallel,
modern business workflow is gradually moving towards a cloud-
based, remote working model, which allows people to access data
wherever they may be in the world, and regardless of the machine
(or even platform) that they are using. Nevertheless, this move
to cloud/web based workflow has been slower to reach the post-
production world, mostly due to two factors: the first is the concern
over security of the remote transfer of sensitive production data;
and the second concerns the technical difficulties which arise in the
remote transfer of digital assets which may reach terabytes in size.

In this paper we address the second issue, particularly with refer-
ence to point cloud data recorded on set. We create an efficient
hierarchical representation of this data, designed for use within a
server-client 3D context, with the goal of enabling a user to rapidly
view a lower resolution visualisation of a large point cloud, whose
resolution is then increased as more data is downloaded. We also
present implementation details of the WebGL rendering techniques
used to enable fast and smooth updating of the 3D scene, with two
different modalities. Refining the data as it is downloaded is not
trivial: simply ’drawing over’ existing low-resolution data is not
sufficient as it is visually unattractive and (more importantly) not
representative of the detail of the scene. Low resolution data must
be culled from the scene when and only when sufficient higher res-
olution data has been downloaded in the local area, a factor which
requires constant monitoring of the current status of the visualiza-
tion.

The principal contribution of this work is that it is the first published
method of progressive visualization of point cloud data via the web.
The technique is designed specifically to address the challenges
presented above: we distinguish our work from established tech-
niques for progressive mesh transfer [10, 8], as the work required to
convert on-set LIDAR data to a high quality mesh can be slow and
labour intensive; and we further distinguish our work from estab-

lished methods of point cloud compression and visualization [16,
6] , as they either require substantial offline pre-processing or are
processor/memory intensive at the time of decompression, which
is not suitable for a web context. We show results of applying
our techniques to six different point cloud datasets, acquired us-
ing multiple LIDAR on-set scans, each comprising of between 4.5
million and 7.5 million points, with varying point densities. Par-
ticularly, we show what effect varying parameters, such as file size
and bandwidth, has on the performance of the system.

2. RELATED WORK
Although laser scanning can generate highly accurate point clouds
of a surface, the resulting data can consist of millions of 3D points
(and associated colour information). The large file sizes involved
present considerable problems in terms of the storage and trans-
mission of the data, particularly over the Internet. As a result,
several research efforts have been made to compress pointcloud
data. Mongus and Zalik [12] present an efficient method for loss-
less compression of laser scan data coming from a LIDAR, apply-
ing three encoding steps to compress the data to 12% of its original
size. Merry et al. [11] present a more generic compression ap-
proach by building a spanning tree and predicting point positions
based on the location of their ancestors. Huang et al. [7] use an oc-
tree based approach to abstract the point cloud data, as do Schnabel
and Klein [17]; both approaches built on seminal work by Gandoin
and Devillers [6] and Peng and Kuo [14]. Despite these efforts,
the challenge of real-time progressive visualisation of (very large)
point clouds over the web has seen little direct research [15], per-
haps due two key difficulties that need to be overcome; namely,
the progressive transfer of 3D data, and the fast update of the 3D
data in the browser. As Limper et al. [9] demonstrate, the balance
between data compression rate (which decreases transfer time) and
complexity (which increases decompression time) is by no means
straightforward for browser-based contexts, which inherently rely
on Javascript to deal with any received data. These challenges
were addressed very effectively by recent research into progressive
meshes over the web [10, 8], showing that it is possible for browser
based 3D engines to effectively handle and present such data to the
user. For more background on these issues and others relating to
web-based 3D rendering, see the recent detailed survey by Evans
et al. [5].

Visualisation of point cloud data at increasing levels of detail (in
an offline context) is a subject that has seen much research, partic-
ularly with regards to the extremely high resolution laser scanning
of physical artefacts. The Digital Michaelangelo project resulted
in a technique called QSplat [16] where extremely large points
cloud datasets (130 million points) could be visualized offline at
progressive levels of detail using a hierarchical technique based on
bounding spheres. More information about the simplification of
point cloud surfaces for rendering purposes can be found in [13].
Straightforward simplification of point cloud surfaces is not neces-
sarily suitable for progressive visualization in a remote client (the
task addressed in this paper), as it may not take into account is-
sues regarding bandwidth and decompression speed. On the other
hand, existing methods of asset transfer that do take into account
these issues are restricted to progressive simplifying the topology
of well-formed triangular meshes, and thus do not extend to other
forms of 3D data such as point clouds. The novelty of our contribu-
tion in this paper is to directly address these issues by presenting a
system of progressive transmission and visualisation of large point
cloud data in a web based rendering environment.

3. GENERAL APPROACH
We aim at providing a system that allows progressive refinement of
the visualisation of large point cloud datasets over the web. First,
we use an offline process to store the point cloud data into hier-
archical data structure, then save that hierarchical structure into a
series of small files, which are made available for download by the
browser client (and subsequent visualization). This approach opens
up two possibilities. The first is to treat the scene holistically, down-
loading the octree in a breadth-first manner without any reference
to camera position within the client render. By downloading the
higher levels of the hierarchy first, the client is able to immediately
display a low-resolution version of the point-cloud, and progres-
sively refine it as files containing lower levels of the hierarchical
structure are downloaded. The second possibility is to use the cam-
era position within the octree to prioritise which data to download
(with data closer to the camera being downloaded first). For this
technique, a series of Level-of-Detail (LOD) spheres are projected
from the camera position, and the octree is traversed depth-first
to prioritise the download of the higher resolution data nearer the
camera.

We have implemented both options, and sections 4 and 5 highlight
the differences. Let us remark that, as usual with browser-based
systems, once data are in the cache, the higher resolution data is
provided much faster. To render the data in the browser, we treat
each node of the octree as a single 3D point to be drawn to the
screen, whose dimensions are proportional to the size of the octree
node, and whose colour is equal to the average colour of all the
nodes (and, ultimately, points) which lie lower down the hierarchy.
The effect of this approach is that the initial lower-resolution data
has a ’blocky’ look, but this is quickly refined as higher resolution
data is downloaded and the draw buffers is updated.

4. GENERAL APPROACH

4.1 Insertion of points
We use an octree to abstract the point cloud structure, as it has been
previously demonstrated to be an effective method of storing such
data [17, 1]. Our approach associates points to the nodes of an oc-
tree in an add, split and disperse manner, which minimises memory
usage (and thus storage). Given the bounding cube of a point cloud
P, our octree O is initialised as a single root node whose half-width
HW and centre point C are equal to those of the bounding volume.
The root node, and any potential child nodes, can store a maxi-
mum number of points which is equal to a threshold T (e.g. if T =
20, each node can store a maximum of 20 points). The points of
P are added to O one-by-one, starting at the root node. Once the
number of points stored by a node is greater than T, a split oper-
ation is executed; the child octant location for each of the points
associated with the node is discovered (based on each point posi-
tion) and a child node is created for each octant which contains a
point. Finally, all the points associated with the parent node are
dispersed and associated to the relevant newly created child nodes.
Any further points which are added to the parent node are auto-
matically dispersed to the child nodes, where the entire operation
is repeated recursively. This top-down method of point insertion
ensures two properties which are important for the future storage
and distribution of the octree. First, each node has no more than T
points associated with it (thus there are no overly ’heavy’ nodes);
and second, every node contains either at least one associated point,
or at least one child node (thus there are no ’redundant’ nodes, that
waste memory and thus storage space).

4.2 Colour assignment
Once all the points of P are added to the octree, we employ a
bottom-up approach to calculate the representative color of each
node in the octree. For each bottom-level node (i.e. with points
associated to it), the average colour of the associated points is cal-
culated. Then, by recursively parsing the octree in a depth-first
manner, we can calculate the colour of each node by averaging the
stored colour for each of its child nodes (remembering that every
node must have either child nodes or associated points). At the end
of this process, every node in the octree comprises of a position
value corresponding to the centroid of the node, and a colour value
corresponding to the mean colour of all the points stored in all of
the nodes below it. The halfwidth value of the node (which, at
render time, is used to calculate the size of the point drawn to rep-
resenting the node) is not stored directly, as the general halfwidth
value for each depth in the tree can be easily calculated from the
halfwidth of the root node only (stored separately, see below). Each
node also has associated with it either a linked list of points or be-
tween one and eight pointers to child nodes.

4.3 Storage Structure
In order to store the octree and point cloud for progressive transfer,
a breadth first traversal of the octree saves the data for each node
or point to a sequence of files. The storage structure needs to be
as efficient and data-light as possible, in order to maximise trans-
fer speed and data management in the browser (via Javascript). A
breadth-first traversal lead to two important results for data transfer:
first, leaves are ordered by depth i.e. all leaves in one level of the
octree are saved before descending to the next level; and second,
the multiple files are saved with precise sizes: when saving the oc-
tree to disk, we can set a maximum size file-threshold for each file,
and thus guarantee an array of files with constant size. For example,
if we set the threshold at 5000 node/point entries per file, and each
entry occupies 17 bytes (see below) then we know that each file
will occupy 85 kilobytes of disk space. If a leaf does not have any
children, we save the position and colour information of the points
(of P) associated with that node. Beyond this common structure,
the requirement to minimise the amount of data transferred means
that the two different techniques as described in Section 3 require
different approaches to storage. The holistic, progressive update of
the entire scene (described in Section 5.1) does not, in fact, require
any detail of the octree - it is never actually traversed by the client,
the data is merely being downloaded and displayed. The signifi-
cance of this is that we only transfer a pared-down amount of data
for each node, in order to increase the speed of the visualisation.
By contrast, the second technique, which prioritises download of
data nearer the camera, does require the client to traverse the oc-
tree. This means that the octree data structure must be recreated in
the browser client: parent-child relationships must be downloaded
for each node, which means greater storage requirements. Thus,
below we define two custom binary formats that are designed to
optimise data transfer for each technique.

4.3.1 Progressive Transfer of entire scene
The data for each node is stored in a 17-byte binary chunk, as de-
tailed in Figure 2. The first byte is an 8-bit signed integer which
encodes the node ’depth’ in the octree hierarchy (e.g. the root node
depth is 0; its eight children depths are 0). It is used to ensure the
lower resolution nodes are not rendered once data for higher reso-
lution nodes are downloaded (see Section 4 below). The next 12
bytes represent the x, y and z coordinates of the central point of the
node (each dimension stored as a 4-byte float value). The following

Figure 1: Representation of file storage structure. The figure
contains representation of three files, each of which contains
entries for the same number nodes in the octree, and each is
the same size.

3 bytes store RGB colour information as a series of 8-bit unsigned
integer values (alpha is not stored in our implementation, as all al-
pha values in our source files were set to 1.0). The final 8-bits are
used a as a bit mask (in Morton order [4]) to indicate whether the
node has any child nodes and, if so, in which octant - again this
information is used to decide whether to render a lower-resolution
node, as described in Section 5.

Figure 2: Structure of binary data representing a single node
for whole scene visualisation

When storing information regarding a point of P, as opposed to a
node, the exact same structure is used, except that the depth value
is set to -1. This flag enables the browser client parsing the data to
quickly identify this particular entry as a point. Each file is named
in simple numerical order, as we intend to download each one in
turn. Finally, we create an index file (in ascii text) which stores
the total number of the node/point entries, and the half-width of the
octree root node.

4.3.2 Progressive Transfer of Data Nearest Camera
As this technique requires transfer of the octree hierarchy, it in-
volves transfering more information. Firstly, in the offline process
the octree is transferred into a linear array (ordered breadth-first).
The advantage of using a linear array is that it allows fast index
based access to that node (i.e. without having to carry out depth-
first traversal of octree), and this becomes particularly important
when recreating the octree structure in the browser client. With
each node is associated both its own index in the array, and the in-
dex of each of its child nodes. Our binary structure for each node
is presented in Figure 3. The first 8-bits code the depth of the node
in octree, as before. The following 4 bytes code a 32-bit integer
with the node’s index in the linear array. Position, colour, and child
octant bitmask information are stored as before. The final 32 bytes
are used to store the array index of each child of the node. There is
a potentially some redundancy here, as our memory efficient octree
is is not guaranteed to have eight children for every node. Yet we
have chosen this approach for simplicity with respect to parsing the

data the data in browser client (as we know that every single entry
is a fixed number of bytes). In this case, as we intend to change the
file download order based on camera position in the scene, a robust
file-naming structure and index are required. We name each file
according to the index of the first node stored within it (e.g. if the
first entry corresponds to the node at index i in the linear array, we
name that file ’i.oct’). As before, we store an index file with total
number of entries and root node half-width. However, this index
file also now stores a list of all filenames.

Figure 3: Structure of binary data representing a single node
for progressive transfer of data nearest camera

4.4 Use of HTTP compression
As well abstracting the point cloud data, we can make use of pure
compression methods that are built into the HTML specification.
By ensuring that gzip compression is enabled on the web-server,
and knowing that it is supported by default on all modern web
browsers, we can apply fast (<10ms) compression and decompres-
sion of the files to be transferred. As an example, an 425kb binary
file as specified in our format, when compressed using gzip to level
6, usually results in a 246kb file (individual file sizes vary depend-
ing on their content). As the gzip compression and decompression
algorithms are coded at a very low-level into the core of the both
the web server and browser client software, this provides us with
a 40% compression in exchange for minimal processing time. Our
tests show that applying a gzip compression level higher than 6
made no difference to the resulting file sizes.

5. DATA PARSING AND RENDERING
For rendering we use a custom WebGL engine created specifically
to update the scene content as more data is downloaded. The chal-
lenge when creating such an engine in WebGL, which will have to
deal with millions of nodes/points, is to be able to both effectively
manage memory (both in the browser and on the GPU), and also
update the draw buffers quickly enough so as not to provide any
delay to the user. Last, but not least, the engine should attempt to
render the lower-resolution levels of the octree in a coherent man-
ner, such that the viewer is able to obtain some idea of the structure
of the scene even while additional data is being downloaded (much
in the same manner as progressive meshes).

This final challenge is not simply a case of drawing higher reso-
lution data on top of the lower resolution data. Such an approach,
while trivial to implement, would leave the undesirable effect of
large, lower-resolution points nearer the camera obscuring the view
of smaller, higher resolution points further away (due to the action
of the z-buffer). Thus, we must construct our data buffers in order
to:

1. Always draw the highest resolution which has been com-
pletely downloaded, in order to display the maximum amount
of information to the user

2. Avoid drawing nodes at a lower level (lower resolution) so as
not to occlude higher resolution data

3. Ensure there are no ’holes’ in the scene in the situation where
a node does not have any children

We know that the octree data is stored (and will be downloaded)
breadth-first; thus, for each new node N of the octree which is read
by the client, let currDepth = (depth of N) - 1.

The files of the data structure are downloaded in the numerical or-
der in which they were stored. Once downloaded, each node/point
entry is stored (along with its relevant properties) as a Javascript ob-
ject, and added to an array. Once a file is completely downloaded,
the WebGL draw buffer is updated with the new data (quickly, us-
ing the BufferSubData command, and avoiding a full flush of the
draw buffer). Each time currDepth is incremented, and in order to
comply with points i. and ii. above, we reset the draw buffer and
reparse the downloaded Javascript array of octree objects, adding
only the nodes of the lowest fully-downloaded depth level. The
octree design we employ means that it is perfectly possible (and
indeed likely) to have a single low-resolution node containing data
for a sparse set of points. This presents a potential issue if we wish
to comply with point iii. above, as such a node does not have any
children, and simply stores the data for these sparse points. To
avoid any potential display problems, as soon as any point infor-
mation (i.e. original data from the LIDAR) is downloaded (marked
with depth value of -1) it is immediately and permanently added to
the draw buffer. The process ends in one of two ways, either when
the full point cloud is downloaded, or at some user-set termination
level. In practice, if the end goal is to provide an attractive repre-
sentation of the point cloud, then downloading the full dataset may
not be necessary. This is especially the case for datasets comprising
several millions of points, which results in poor performance due
to the high memory requirements of the browser process (detailed
in Section 6).

5.1 Update based on camera position
While the principal application of the work in this paper is to vi-
sualise the entire set, we have also implemented a system to pri-
oritise the download of higher resolution data that is nearer the
camera, and leave data that is further from the camera at a lower
resolution. We define two spheres around the location of the cam-
era, each sphere associated with a minimum display depth value
(i.e. data within the sphere should be downloaded to a minimum
resolution). The minimum depth values are correlated to sphere
size, such that nodes/points found within the smaller sphere will
be preferentially downloaded over nodes found within the larger
sphere, which likewise are preferentially downloaded over all other
data. Our system features a free moving camera, which is con-
trolled by the user via a combination of keyboard and mouse input.
The system periodically parses the octree recursively in a depth-
first manner to find any cells intersecting with either of the spheres.
It then cross-references the index of these cells in the linear array
with the list stored in the index file. This cross referencing results
in a list of files which contain the relevant depth information, or-
dered low-resolution to high-resolution. Note that, in this scenario,
there is no concept of current depth (as in the previous scenario), as
the depth of the nodes displayed in the scene is not uniform (as it
depends on camera position). This means that we are unable to pro-
gressively update the draw buffers as in the previous (whole scene)
technique, and must update the entire draw buffer after each file has
been downloaded. Thus, after a file has been downloaded there is a
brief (but noticable) slow down while new buffers are uploaded to
the GPU.

6. RESULTS
The work in this paper is designed to visualise large point cloud
datasets in a web based environment. To test our methods, we used
six datasets, each containing roughly between 4.5 and 7.5 million
points. The datasets were constructed from LIDAR scans of differ-
ent environments (occasionally several LIDAR scans of the same
environment combined into a single dataset). Each set was pre-
sented to our system as a single text file in OFF format, where each
line contained the position and colour of a single point. Table 1
lists the relevant details for each dataset. Each dataset was pro-
cessed and inserted into an octree, via a C++ process, whose output
was a series of files as described in Section 4. The threshold T of
maximum points in any node was set to 20 (though this was varied
in a future experiment, as described below). All results in the paper
were obtained using Google Chrome v.33, running on a 2.6GHz
Core i7 Macbook Pro, with 8GB of RAM, and an Nvidia Geforce
650M graphics card with 1GB of RAM.

Table 1: Details for input datasets
ID # Points Input File Size (MB)
1 7,325,251 290.5
2 4,647,968 181.2
3 5,952,681 235.0
4 6,757,348 340.6
5 4,837,404 249.2
6 6,641,100 334.6

Before embarking on any complete tests regarding download speed
from a remote server, we wanted to assess the capability of the
browser to manage and render any one of the datasets when stored
locally (our hypothesis being that that the memory and data pro-
cessing issues would mean that attempting to parse and render the
full dataset would overwhelm the browser). We created a simple,
offline, point cloud renderer application in OpenGL, and confirmed
that each dataset could be opened and viewed at acceptable fram-
erates. However, parsing and displaying the entire dataset in a We-
bGL version of that application, loading data from local storage,
rendered the browser process inoperative. Further tests showed
that progressively loading the data maintained a steady 60 fps aver-
age until reaching 3.5 million points, beyond which the framerate
dropped suddenly to unusable levels (suggesting an issue relating
to browser memory rather than GPU). Thus, for the results in this
paper, we set a maximum number of points as 3.5 Million.

6.1 Progressive visualisation of whole scene

Table 2: Mean time taken (in milliseconds) to download to
download and render the point clouds at three resolution levels,
and at three different bandwidths (megabits per second)

Display Level (Av. points) 1mbps 8mbps 64mbps
6 (1958) 2263 886 565
8 (48182) 10912 3203 2517

Final (3.5M) 393287 95072 61590

Figure 4 presents data on the average time (in milliseconds) re-
quired to download and render all the datasets at different resolu-
tion levels. Table 2 shows the raw figures for the graph. Figure 5
shows visual results of the different resolutions for a single dataset.
For all datasets, we consider an octree depth level of 6 (i.e six sub-
divisions of initial bounding volume) to be acceptable resolution

Figure 5: Mean time taken (logarithmic scale, in milliseconds)
to download and render the point clouds at three resolution lev-
els, and at three different bandwidths (megabits per second).
Chunk size for all data was 425kB. Figure 5 shows the visual
results of the different levels on one dataset.

for use as a ’preview’ of the scene; level 8 to be acceptable as an
approximation of the scene, and the final level of detail is when the
number of points <=3.5M.

Table 3: Effect of changing the chunk (or file) size on the mean
time taken (in milliseconds) to download and render the point
clouds at three resolution levels, at a bandwidth of 8mbps

Display Level (Av. points) 85kb 425kb 1700kb
6 (1958) 452 886 2397
8 (48182) 5262 3203 5599

Final (3.5M) 154581 95072 85746

The results show that, with a moderate bandwidth of 8 megabits
per second, an initial approximation of the point cloud is visible
on screen within less than a second, and in fewer than four sec-
onds it has been refined to a level that we consider acceptable for
usage as an approximate visualisation of the scene. The full res-
olution pointcloud, capped at 3.5 million points, appears after 95
seconds, however the scene is not static during that time, it is be-
ing constantly refined. One of the main variables in the system is
the file-threshold value discussed in Section 4.3 above. This value
essentially determines the size in bytes of each file (each chunk of
data) that is downloaded. Table 3 present data showing the effect of
varying the file size, from 85 kilobytes (KB) (5000 node entries per
file) to 425KB (25000 entries per file) to 1700KB (100000 entries
per file), at a bandwidth of 8mbps. As might be expected, a smaller
file size displays the lower resolution data faster (as the first 6 levels
of information of the octree are present in the first one or two files).
However, as more files are downloaded, the overhead involved in
making multiple HTTP requests begins to become more of a factor,
and when using a larger file size, the 3.5M point limit is reached in
almost half the time. The data in the table suggest that a file size in
the region of 425 kilobytes provides a balance between being small

Figure 4: Examples of a dataset being progressively rendered. The far left image shows the dataset at a depth of 6, the centre image
at a depth of 8, and the far right image once the dataset has finished downloading (with 3.5M points). All images are screengrabs
from Google Chrome v.33

enough to quickly display lower resolution data and large enough
to not slow down performance due to unnecessary parsing and up-
dating the draw buffer. Viewing the results, one natural conclusion
would be to gradually increase the file size as the depth of the octree
increases, this is discussed as part of future work below.

Figure 6: Progressive loading of higher resolution data based
on distance from camera

6.2 Update based on camera position
Figure 6 shows screenshots of the system progressively loading
higher resolution data as the camera moves through the scene. One
particular difficulty in this implementation is the speed at which
the camera is permitted to move (as discussed above). In this im-
plementation we simply limit the movement speed of the camera
(to simulate as if the user were walking through the environment).

6.3 Effect of number of points per node
As proposed in Section 4.1, the maximum of number of points that
can be added to each node before they are dispersed to child nodes
is controlled by a threshold T. Varying this threshold naturally con-

trols the depth of octree, and the effect of this can be seen in Figures
7 and 8. If T is set too high, then the finer details of the point cloud
might never be downloaded, due to the restriction on the maximum
number of points. Figure 7 shows how increasing T to a value of
100 means that the final rendering of the scene loses final detail,
as the octree did not create nodes of sufficient resolution. Figure
7 shows the same view with T = 20, showing the finer detail bet-
ter represented. The rendering of both versions of the dataset was
capped to 3.5M points, as described above.

Figure 7: Effect of setting T=100 (final visualisation).

6.4 Buffer update performance
One of the most important characteristics of our system is the time
required to update the draw buffer. This operation blocks the GPU
and thus, if it takes too long and/or happens too frequently, then the
user experience is unpleasant. We measured the average time taken
(for all datasets) for the update function to upload new data to the
GPU once each file had finished downloading. For accuracy, mea-
surements were made using the window.performance.now() func-
tion, as specified by the W3C Web Performance working group
[18]. Table 4 presents the average update time for the three dif-

Table 4: Draw buffer update time for different file sizes
File Size (kb) Average update time (ms)

85 11.73
425 46.83

1700 214.53

ferent file sizes tested in Section 6.1. Unsurprisingly, the update
times for the larger file sizes are greater than those for the smaller
file sizes. For the smallest file size, and if the application is run-
ning at 60 frames a second, the update time is less than the time
to render a single frame, and in practice is barely noticeable. On
the other hand, the average update time for the largest file size is
nearly a quarter of a second, which is impossible to ignore. The
update time for 425kb represents a middle ground, but 46ms is the
equivalent of several dropped frames and is clearly noticeable.

6.5 Summary of results
Table 5 presents a summary of all the timings involved in our tech-
nique, for moderate bandwidth of 8mbps and using a 425kB file
size. In the table, we break down the timings for for each step in
order to provide an overview of the bottlenecks in the system.

7. DISCUSSION AND FUTURE WORK
It is difficult to directly compare this work with that previously pub-
lished for two reasons. Firstly, our goal is not the pure compres-
sion (and subsequent decompression and display) of point cloud
data; rather it is the fragmentation of that data in manner that per-
mits its fast transfer over a network to a remote visualisation client.
Secondly, the majority of the work carried out in this particular
field has concerned progressive transfer of well-formed mesh data,
which can be time-consuming to create directly from LIDAR data,
as previously stated. Nevertheless, we can make some comparisons
based on published results. Table 6 shows comparative statistics
between the Progressive Mesh transfer of Lavoué et al [8], using
the same bandwidth (5mbps). The results show that our technique
is equivalent (or marginally faster) to download and render both
low resolution and medium resolution data (high resolution data
for Lavoué et al. is not available). While Lavoué et al. must deal
with the correct insertion of vertices during this time, our technique
must equally deal with the culling of higher level (lower resolution)
nodes of the octree. As mentioned above, the use of progressive
meshes over the web is perhaps the most well-established method
of progressively transferring 3D assets for web visualisation [10,
8]. Yet the core technique of progressive meshes cannot be ap-
plied to point clouds. Addressing this issue, while still retaining
the benefits of progressive visualisation of 3D data in a browser
based context, is the principal contribution of the paper. The work
particularly addresses, and is suitable for, situations where laser
scans of environments are recorded using a LIDAR scanner or sim-
ilar (for example, in the case of a film production set, or mapping
or geographical features).

Table 6: Summary of mean results for all datasets (with sample
images for each level). Bandwidth was clamped to 8mbps and
the file size used was 425kB

Low Resolution Medium Resolution

verts time
(ms)

Rate
(verts/ms) # verts time

(ms)
Rate
(verts/ms)

Lavoué13 1500 800 1.875 38K 3000 12.666
Our work 1958 938 2.087 48K 3781 12.743

The results show that, unsurprisingly, a smaller file size (chunk
of data to be transferred) results in faster appearance of a low-
resolution representation of the point cloud, particularly at low band-
widths. This highlights two main benefit of this work: the fast vi-
sualisation of large point cloud data in a web environment, without
having to wait for the entire data set to download; and the ability
to simplify a large point cloud to a level where it can be rendered
in a WebGL context without performance issues. Furthermore, a
smaller file size provides a better user experience as there is only
minimal delay when updating the draw buffers. Nevertheless, the
increased number of petitions to the server that are required when
using a smaller file size means that the total time to download the
dataset is considerably longer. One possibility for future research
is to take the best of both worlds and gradually increase the file size
as the depth of the octree increases, thus the lower resolution data is
displayed very quickly, while higher resolution data is transferred
more efficiently.

Despite the contribution and promising results, we note that our
current solution, as proposed in this paper, is far from optimal.
Apart from visualisation, one of the primary reasons to record data
with a point cloud is to extract topological information; which is
notably lacking from our approach. We also have made little ef-
fort to truly understand the limits on the rendering of points in
a browser engine. We intend to explore these avenues in our fu-
ture work. Creating mesh topology from point clouds it is an issue
which has seen much research [2]. Such meshes could be used in a
progressive meshes approach to remote visualisation, bypassing the
need for point cloud visualisation. On the other hand, we carried
out several tests using the popular meshing/visualisation software
MeshLab [3] and found that creating high quality meshes of our
input point cloud data (specifically with regards to their topology)
required a considerable amount of manual intervention. Our future
work will focus on creating high quality reference meshes for our
input data, which will then enable us to carry out a critical compar-
ison between progressive transfer of point clouds and meshes. We
also plan to investigate the possibility of using node information
to create meshes of the data: by carrying out Principal Component
Analysis on the points stored within a node, the eigenvectors can
be used to estimate a normal vector for a putative plane represent-
ing those points. This plane could be used to visualise the node
(instead of a single point), which would then allow us to essentially
create a mesh from the octree.

8. ACKNOWLEDGEMENTS
This work has been partially funded by the Spanish Ministry of Sci-
ence and Innovation (TIN2011-28308-C03-03), and the IMPART
FP7 European Research project (http://impart.upf.edu).

9. REFERENCES
[1] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high

quality rendering of point sampled geometry. In Proceedings
of the 13th Eurographics Workshop on Rendering, EGRW
’02, pages 53–64, Aire-la-Ville, Switzerland, Switzerland,
2002. Eurographics Association.

[2] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3D objects with radial basis functions.
In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques - SIGGRAPH ’01, pages
67–76, New York, New York, USA, Aug. 2001. ACM Press.

Table 5: Summary of mean results for all datasets (with sample images for each level). Bandwidth was clamped to 8mbps and the
file size used was 425kB

Level 6 Level 8 Final

Mean dataset size (MB) 255.18 MB
Mean dataset pointsize 6,026,958

Mean preprocessing time (offline, full datasets) 12 seconds
Mean bytes transferred (compressed, approx) 13.6kB 335.6kB 23.8MB

Mean number of points 1958 48128 3,500,000
Mean Transfer time (8mbps) 886ms 3.2s 95.1s
Mean framerate (60fps limit) 57fps

Mean buffer update time 46.83ms

[3] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane,
F. Ganovelli, and G. Ranzuglia. Meshlab: an open-source
mesh processing tool. In Eurographics Italian Chapter
Conference, pages 129–136. The Eurographics Association,
2008.

[4] C. Ericson. Real-time collision detection. CRC Press, 2004.
[5] A. Evans, M. Romeo, A. Bahrehmand, J. Agenjo, and J. Blat.

3D graphics on the web: A survey. Computers & Graphics,
41:43–61, Feb. 2014.

[6] P.-M. Gandoin and O. Devillers. Progressive lossless
compression of arbitrary simplicial complexes. ACM
Transactions on Graphics, 21(3):372–372–379–379, July
2002.

[7] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi. Octree-based
progressive geometry coding of point clouds. In Proceedings
of the 3rd Eurographics / IEEE VGTC Conference on
Point-Based Graphics, SPBG’06, pages 103–110,
Aire-la-Ville, Switzerland, Switzerland, 2006. Eurographics
Association.

[8] G. Lavoué, L. Chevalier, and F. Dupont. Streaming
Compressed 3D Data on the Web using JavaScript and
WebGL. In ACM International Conference on 3D Web
Technology (Web3D), San Sebastian, Spain, pages 19–27,
2013.

[9] M. Limper, S. Wagner, C. Stein, Y. Jung, and A. Stork. Fast
delivery of 3D web content: a case study. In Proceedings of
the 18th International Conference on 3D Web Technology,
pages 11–17. ACM, 2013.

[10] A. Maglo, C. Courbet, P. Alliez, and C. Hudelot. Progressive
compression of manifold polygon meshes. Computers &
Graphics, 36(5):349–359, 2012.

[11] B. Merry, P. Marais, and J. Gain. Compression of Dense and
Regular Point Clouds. Computer Graphics Forum,
25(4):709–716, Dec. 2006.

[12] D. Mongus and B. Žalik. Efficient method for lossless
LIDAR data compression. International Journal of Remote
Sensing, 32(9):2507–2518, May 2011.

[13] M. Pauly, M. Gross, and L. P. Kobbelt. Efficient

simplification of point-sampled surfaces. In Proceedings of
the Conference on Visualization ’02, VIS ’02, pages
163–170, Washington, DC, USA, 2002. IEEE Computer
Society.

[14] J. Peng and C.-C. J. Kuo. Octree-based progressive geometry
encoder. In ITCom 2003, pages 301–311. International
Society for Optics and Photonics, 2003.

[15] I. Prieto, J. L. Izkara, and F. J. Delgado. From point cloud to
web 3D through CityGML. In Virtual Systems and
Multimedia (VSMM), 2012 18th International Conference
on, pages 405–412, 2012.

[16] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution
point rendering system for large meshes. In Proceedings of
the 27th annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’00, pages 343–352,
2000.

[17] R. Schnabel and R. Klein. Octree-based Point-Cloud
Compression. In SPBG, pages 111–120, 2006.

[18] W3C. Web Performance Working Group, 2014.

