
WebGLStudio – a Pipeline for WebGL Scene Creation

Javi Agenjo Alun Evans Josep Blat
Universitat Pompeu Fabra, Barcelona, Spain

	
	
	
Figure 1. Three screencaptures of WebGLStudio Editor. Left-to-Right: Real-time editing on a highly realistic face asset; Post-processing

effects (primarily Depth-of-Field) on a high-polygon model; Real-time editing of the parameters of a particle system.	
	
Abstract

We present WebGLStudio - a pipeline for the creation and editing
of high-quality 3D scenes using WebGL. The pipeline features a
3D Scene-Graph rendering engine; an interactive scene editor
allowing detailed setup and configuration of assets in real-time; a
web-based asset manager; and a stand-alone rendering module
ready to embedded in target applications. We further present a
series of implementational details discovered to overcome
limitations of the web browser context to enable realistic
rendering and performance. The principal contribution of this
work to the graphics community is the methodology used to take
advantage of several unique aspects of Javascript when used as a
3D programming language; and the demonstration of possibilities
involved in real-time editing of the parameters of materials,
shaders and post-processing effects, in order for the user/artist to
create a 3D scene as desired.

CR Categories: I.3.7 [Three-Dimensional Graphics and
Realism]: Virtual reality— [D.2.13]: Reusable Software—
Reusable libraries

Keywords: WebGL, Web Integration, Real-Time Editing,
HTML5, Pipelines

1. Introduction

Many digital production companies (whether for games, animated
productions or digital film) now control and review their assets
via web-based tools, due to the fast-moving ecosystem and rapid
prototyping of web applications.

 * e-mail: {javi.agenjo, alun.evans, josep.blat}@upf.edu

Professional applications such as Shotgun [2013] all now provide
browser-based tools which allow collaborative and remote
working. Yet, despite using workstations with high-end graphics
hardware, the inherent culture regarding browser-based and online
3D has meant that existing web applications do not make use of
the full potential of the hardware in comparison to native (non-
web) applications. This problem is exacerbated by a lack of a
pipeline and tools for the creation, editing and export of 3D
scenes for in-browser display. One reason for this lack of
integration of Web-based 3D may be related to the challenges in
attending to aspects of real-time rendering that go beyond the
basic rendering of assets. Such challenges include:

• efficient local/remote management of large volume
assets and data

• scene setup and editing using such assets
• correct export of render settings to ensure the scene can

be viewed correctly in different environments.

Closed solutions such as Unity[2013] partially address these
problems but are also constrained by the requirement to use
proprietary systems, and are principally designed for standalone
applications (such as as games) that are not intended to be
integrated into wider systems. In this paper we present
WebGLStudio, a pipeline designed to address these challenges,
featuring principally a scene editor which allows real-time asset
import and in-browser setting of parameters for materials and
shaders.

The first stage of 3D tecnologies on the web is already complete.
There are currently several libraries available, such as SceneJS
and Three.js to create 3D scenes on the web without having to
struggle with the low-level layer of parsing, rendering and
interacting with the scenes. Yet, these libraries are created for, and
addressed to, people with a good knowledge of 3D graphics
programming. They are meant to be the framework upon
developers can build their own 3D web applications, and thus are
not so directly useful in the wider context of browser-based tools.
Thus, there is a gap to be filled regarding to web/tool developers
without 3D graphics knowledge who wish to integrate a 3D scene
into their websites or web-based applications. The solution to this
second stage of 3D web technologies will come when the tools to
construct and deploy 3D contents are mature enough to be
accessible by all professional developers. One option may be to
have some kind of standard markup language that allows the

inclusion and editing of the 3D scene directly by the markup code.
However, the majority of the variables of a 3D scene are too
complex to tune without constant visual feedback, and some of
them could easily ‘break’ the scene completely if they are
tweaked without visual feedback. A 3D scene editor, featuring a
mature and powerful GUI, therefore becomes mandatory - as is
exemplified in the wide-variety of scene editors designed for
offline use, such as Autodesk Maya or 3D Studio Max. However,
the problem with such editors is that they are designed to be used
with their own prorietary offline rendering engines, so it can be
difficult to match the scene succesfully, even if a more standard
format (such as Collada or FBX) is used.

2. WebGLStudio Overview

Our proposed solution to the issue of scene creation using
browser-based 3D is a pipeline (and corresponding suite of tools)
called WebGLStudio. The pipeline based on our own 3D engine
to edit a 3D Scene directly on the web, while the visual tool
allows instant feedback of the final result. The tool has been
created to make it straightforward to build, edit, and deploy an
scene inside a working website with ease. The principal steps in
the pipeline for the creation of a new 3D scene are: Import assets
from several file formats (meshes, textures, materials)

• Visual arrangement of the entities in the scene (lights,
meshes, cameras).

• Configure the visual appearance (materials, textures,
meshes)

• Apply postprocessing effects
• Save the scene, export for external rendering

Once the scene is created all the info related to the structure is
stored as a JSON file. To include it in a 3rd party website all that is
required is HTML code that will load the JSON and render the
scene on a HTML5 Canvas.

The entire pipeline is developed in a very modular fashion. One
of the benefits of developing such a pipeline for the web is
derived from the freedom in Javascript to rewrite any element of
code by importing another source file. As a result, the Pipeline is
designed to be easily extendable using different modules (or
plugins) that replace or extend parts of the pipeline. The editor
itself (see below) only takes care of the interface and rendering,
while the greater pipeline comes from the interaction between
different modules. It is worth pointing out that this modularity
would be more difficult to achieve in language which is less
dynamic than Javascript.

2.1 Core Engine

When developing a 3D graphics engine for the web, care must be
taken to avoid efficiency problems related to the Javascript
context (as mentioned above). We use glMatrix[2013] for all
matrix operations because it has proved to provide good
performance. For the lower layer (responsible for basic drawing
and lighting) we use a heavily modified version of the library
LightGL [2013] which wraps the common actions in WebGL with
more user friendly classes (for shaders, textures and meshes).

Javascript is a very powerful dynamic language, which provides
the developer with several interesting tools to overcome software
design problems:

• The Prototype paradigm (the possibility to override
existing methods and classes ‘on the fly’ i.e. in code
executed at a point after the original)

• The facility to extend the structure with new
components and function

• The ability to crawl an existing Object or Object
hierarchy

The upper layers of WebGLStudio take advantage of all these
properties – however the core engine relies more on a more direct
in order to improve rendering performance. Every scene node is a
component container (similar to the approach of modern game
engines such as Unity). Every behaviour is wrapped around a
component and can be attached to any node. Even cameras and
lights are considered components. The components interact with
the node, the scene and the rendering pipeline through events, so
the platform does not need to have a previous knowledge about
their existence.

2.2 Render Pipeline

The render pipeline (which is wrapped into an independent
module) reads the scene graph and renders a frame according to
the information stored in the tree. We use a forward rendering
solution instead of deferred solutions due to the lack of support in
WebGL for the attachment of multiple frame buffer objects. The
renderer supports any number of lights through multipass
rendering (although naturally the performance can suffer when
having too many lights). For shadowing the renderer uses PCF
shadowmaps [Bunnell & Pellaci, 2004], and supports realtime
cubemap reflections. For Normalmaps in tangent space the
Renderer uses the derivative functions in the pixel shader, via the
“OES_standard_derivatives” extension in WebGL, which is
supported in Chrome versions 25.0 and above.

2.3 Editor

The most visually dominant aspect on the pipeline is the main
Scene editor which allows transformation and editing of imported
assets. From the asset manager component of the pipeline (see
Section 2.4 below), assets can be inserted into the scene, and
position and scaled in real-time using tools and a free-roaming
camera which will be familiar to any user of existing 3D software
such as Autodesk Maya or 3D Studio Max (see Figure 2).

Figure 2. WebGLStudio Editor, showing dynamic creation of
editable attribute fields for a scene. The fields in the right column

can be created dynamically by parsing the selected node in the
scene tree.

The editor instantiates the engine and dynamically creates editable
fields and tools, based on the selected component in the scene tree.
These fields allow direct and real-time changing of the parameters
of the 3D scene, thus enabling instant scene configuration without
the need to edit code and reload the engine. The fields/tools are

created by hooking events into the visual interface from the
underlying engine. It uses a custom widgets library developed
adhoc for this project, called LiteGUI. The concept behind
LiteGUI is to use Javascript Prototypes to provide an underlying
base structure for the GUI presentation of any scene component,
while allowing a developer to fine tune the GUI with extra code if
required. When the system creates the GUI for a component (e.g
the Particle System, see below) LiteGUI wil first check to see if
the developer has coded a custom GUI layout/configuration for
that component. If not, LiteGUI will fall back and create a
‘default’ GUI which will allow at least basic editing of the
components properties.

2.4 Asset Management and Server Sync

When editing an scene the user needs to have the freedom to
import their own assets (textures, meshes, materials). Being a web
application, there are two possible sources for assets, each of
which presenting challenges for 3D scene creation:

1. Local: Web applications do not have native access to
the hard drive for security reasons. Some HTML5 APIs
such as localStorage or indexedDB address these issues
they are designed to store small amounts of data (around
2.5 MBs), and 3D editing needs around 100MB for a
full scene.

2. Remote: To ensure that other users can see the same
scene as the one seen by its creator, all the content must
be stored remotely on the web at some point.
Furthermore, remote storage components allow further
collaborative scene design.

The need to comprehensively address both use-cases has lead us
to develop a simple server file system library that can be accessed
through a REST API. In this way, any client-side component in
our platform can store data in the server. When storing the assets
on the server, we use an indexed SQL database. This permits the
system to track any changes, set privileges, store metadata, and
enables users to add comments. We plan to extend our work in
this points inside collaborative environments (see Section 4
below). The limitations of local storage are overcome by only
saving scene structural information (see Section 2.9 below) which
rarely approaches the size limit for localStorage.

Figure 3. The resource manager

When storing the assets on the server, the data is optimized and
recomputed in order to store additional data, such as missing
streams, topological data, bounding boxes or octree information.
This additional overhead when first uploading the asset frees the
engine from having to compute the data at run-time, every time
the asset is loaded into a scene. This is particularly advantageous
when loading a scene with multiple assets, as the pre-computed
information prevents the freeze of the browser process. To store
the meshes in binary format we have created a javascript library
called BinaryPack that transforms Javascript objects containing
Typed Arrays to a single ArrayBuffer that contains all the
information, therefore storing the topology of the mesh in a GPU-

friendly way. Thus, during the mesh loading process we do not
need to parse any info; the data is already stored in typed-arrays
so the upload to the VRAM is fast and non-blocking when using
large meshes.

2.5 Post-processing effects

Post-processing effects are added to the output of the scene by
using the classic approach of rendering to a texture and applying a
shader when rendering to the screen. This approach has the same
problem that occurs when working in regular OpenGL, which is
the loss of Multisample Antialiasing (MSAA). To add antialiasing
we use a supersampling approach, and then apply a sub-sampling
shader when rendering to the screen. The current supported post-
processing effects are color-correction, glow, brightness and
contrast and depth of field.. We are also working on using a
modular graph (similar to hypergraph in Autodesk Maya or The
Foundry’s Nuke) to construct the final frame plugin different
boxes representing image filters and effects.

2.6 Particle Engine

To test efficiency of Javascript updating and uploading a mesh to
the VRAM we developed a particle system that permits
configuration of several parameters in real time. Each particle
system in the scene (containing hundreds of particles) is rendered
using one single mesh, where every particle contained within it is
an orientated quad. This mesh has to be updated and uploaded to
the VRAM once every frame so ensure the particles face the
camera. We were surprised to see very good performance
(>60fps) even in systems with over 1000 particles. Even z-sorting
the particles did not reduce the performace greatly (first we
precompute the distance to the plane of the camera and use the
Javascript sort() method). Some of the parameters that can be
configured in the particle system are: Life, Size, Color; Texture
(we support animations though multiple frames texture); Alpha
over time (using a curve): Size over time (using a curve); and
Physics parameters (gravity, speed, Friction)

2.7 Mouse Picking

In the creation of a scene editor, accurate and fast mouse-picking
is naturally of high priority, in order to detect which object is
selected when the user interacts with the 3D scene. Bounding box
collisions were not considered suitable because of suboptimal
performance when meshes are overlapping, or if the (free-
moving) camera is navigating through them; and our goal was that
the picking accuracy should be “pixel-perfect”. The solution was
to render the scene again in a separate buffer while assigning a
flat color to every object. To speed up the process we use the
OpenGL scissor test to limit the rendering to the pixels around the
mouse. After that the pixels around the mouse are read using the
gl.readPixels() function and the color is checked to see which
object was behind the mouse pointer. This method has proven to
be extremely effective because it only needs to be computed once
per frame. It has very little noticeable delay, because most of the
work is done in the GPU.

2.8 Real-time Mesh Painting

The Pipeline features a tool for realtime mesh painting that allows
the user to paint into the texture, drawing directly on the mesh in
the scene. To do this we need to solve two problems:

• Detecting the collision point of the ray that goes from
the camera to the mouse.

• Paint the pixels of the texture that lay around the
position where the ray collided the mesh.

To find the collision point we can’t use the same approach used
for picking because we needed to know the exact collision point
in world space. Instead an Octree is created at the beginning of the
painting process and is traversed as the mouse moves. Although,
this is a more CPU intensive approach, the performance is
sufficient for real-time use.

Once the collision position is determined, our approach is to avoid
simply translating it directly to texture coordinates and painting a
quad in that position, because this approach would produce
distortions in areas where the texture density changes dramatically.
Instead, our technique tries to locate which pixels of the texture
lie within a certain distance of the collision point and colorize
them. To do this the mesh is rendered into the texture using the
texture coordinates as vertex position, and the original vertex
coordinates as an extra stream. Thus, the mesh is effectively
unwrapped over the color texture, and from the extra stream we
have the pixel position in world coordinates. Finally, we can
colorize according to the distance between the world coordinates
of the pixel and the collision point. Because this solution is mostly
computed on the GPU the results are instantaneous - with a mesh
with more than 10,000 triangles the performance is good enough
to paint on the mesh directly in real-time.

2.9 Scene saving and Export

The scenes can be converted to a JSON file containing relevant
information about the scene nodes, such as material configuration
and links to asset files. The serialization method of the scene
sends a message to every node and component to retrieve the vital
information and constructs a Javascript object that it is converted
to JSON using the JSON.stringify() method. This way we can use
localStorage to save it or send it to our server to share it with
other users. This JSON only contains data about the scene and
materials, only references to meshes and textures are stored

3. Performance

The performance results presented in Table 1 are taken from a a
modest desktop system: Intel Quadcore 2.6 GHz, 3GB RAM,
Nvidia Geforce 8600 with 512Mb VRAM. The browser used was
Google Chrome v25.0. Our internal test show rendering
performance in Mozilla Firefox v19.0 is 80% of that of Chrome.

Figure 4. Scene 1 (see Table 1)

Figure 5. Scene 2 (see Table 1)

Table 1. Basic Performance, using texture resolution of
1024x1024, and screen resolution of 1400x700

ID Triangles Details FPS
1 30,000 1 light (1024px shadowmap) 60
2 40,000 Colourmap, Specularmap

Normalmap; 8 lights
(1 Shadowmap)

40

4. Conclusions and Future Work

In this paper we have demonstrated that WebGL is suitable for the
creation of large, multifacet pipelines that enable rapid and real-
time setup, creation and modification of 3D scenes. The principal
contribution of this work is the methodology used to take
advantage of several unique aspects of Javascript when used as a
3D programming language; and the demonstration of possibilities
involved in real-time editing of the parameters of materials,
shaders and post-processing effects, in order for the user/artist to
create a 3D scene as desired. A secondary contribution of this
paper is towards the democratization of 3D web technology,
giving artists and non-technical users (for example, regular users
of software such as Autodesk Maya or 3D Studio Max, who are
familiar with concepts such as materials and shaders) the power to
create high quality 3D scenes and distribute them via the web,
without the requirement for proprietary plugins.

Our future work is focused on exploiting the inherent distributed
nature of the web to allow collaborative scene development and
editing. Current lines of work are to enable collaborative editing
features more su ited for the web (fork an scene, comment or tag
information, make revisions...); enable realtime multiuser
interaction for simultaneous editing of an scene; and create a
modular editor for materials and behaviours. Our plan is to launch
WebGLStudio as an open-source project, where the modular
nature may allow it to be developed into a powerful tool for
creation of web-based 3D scenes.

References

BUNNELL, M., AND PELLACI, F. 2004. Shadow Map Antialiasing.

In GPU Gems, Chapter 11. Addison-Wesley Professional.

GLMATRIX. 2013. Retrieved Mar 11, 2013. http://glmatrix.net/

SHOTGUN.2013. Retrieved Mar 11, 2013.
 http://www.shotgunsoftware.com/

LIGHTGL. 2013. Retrieved Mar 11, 2013.

https://github.com/evanw/lightgl.js

UNITY3D. 2013. Retrieved Mar 11, 2013 http://www.unity3d.com.

